Skip to content

Commit

Permalink
Merge branch 'master' of git://code.opencv.org/opencv
Browse files Browse the repository at this point in the history
  • Loading branch information
Philipp Wagner committed Sep 7, 2012
2 parents cfa250e + f268af8 commit 42f7329
Show file tree
Hide file tree
Showing 3 changed files with 0 additions and 20 deletions.
2 changes: 0 additions & 2 deletions modules/highgui/src/makeswig.sh

This file was deleted.

2 changes: 0 additions & 2 deletions modules/legacy/include/opencv2/legacy/legacy.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -1787,7 +1787,6 @@ class CV_EXPORTS_W CvEM : public CvStatModel

virtual float predict( const CvMat* sample, CV_OUT CvMat* probs ) const;

#ifndef SWIG
CV_WRAP CvEM( const cv::Mat& samples, const cv::Mat& sampleIdx=cv::Mat(),
CvEMParams params=CvEMParams() );

Expand All @@ -1806,7 +1805,6 @@ class CV_EXPORTS_W CvEM : public CvStatModel
CV_WRAP cv::Mat getProbs() const;

CV_WRAP inline double getLikelihood() const { return emObj.isTrained() ? logLikelihood : DBL_MAX; }
#endif

CV_WRAP virtual void clear();

Expand Down
16 changes: 0 additions & 16 deletions modules/ml/include/opencv2/ml/ml.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -201,14 +201,12 @@ class CV_EXPORTS_W CvNormalBayesClassifier : public CvStatModel
virtual float predict( const CvMat* samples, CV_OUT CvMat* results=0 ) const;
CV_WRAP virtual void clear();

#ifndef SWIG
CV_WRAP CvNormalBayesClassifier( const cv::Mat& trainData, const cv::Mat& responses,
const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat() );
CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses,
const cv::Mat& varIdx = cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
bool update=false );
CV_WRAP virtual float predict( const cv::Mat& samples, CV_OUT cv::Mat* results=0 ) const;
#endif

virtual void write( CvFileStorage* storage, const char* name ) const;
virtual void read( CvFileStorage* storage, CvFileNode* node );
Expand Down Expand Up @@ -249,7 +247,6 @@ class CV_EXPORTS_W CvKNearest : public CvStatModel
virtual float find_nearest( const CvMat* samples, int k, CV_OUT CvMat* results=0,
const float** neighbors=0, CV_OUT CvMat* neighborResponses=0, CV_OUT CvMat* dist=0 ) const;

#ifndef SWIG
CV_WRAP CvKNearest( const cv::Mat& trainData, const cv::Mat& responses,
const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false, int max_k=32 );

Expand All @@ -262,7 +259,6 @@ class CV_EXPORTS_W CvKNearest : public CvStatModel
cv::Mat* dist=0 ) const;
CV_WRAP virtual float find_nearest( const cv::Mat& samples, int k, CV_OUT cv::Mat& results,
CV_OUT cv::Mat& neighborResponses, CV_OUT cv::Mat& dists) const;
#endif

virtual void clear();
int get_max_k() const;
Expand Down Expand Up @@ -490,7 +486,6 @@ class CV_EXPORTS_W CvSVM : public CvStatModel
virtual float predict( const CvMat* sample, bool returnDFVal=false ) const;
virtual float predict( const CvMat* samples, CV_OUT CvMat* results ) const;

#ifndef SWIG
CV_WRAP CvSVM( const cv::Mat& trainData, const cv::Mat& responses,
const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
CvSVMParams params=CvSVMParams() );
Expand All @@ -511,7 +506,6 @@ class CV_EXPORTS_W CvSVM : public CvStatModel
bool balanced=false);
CV_WRAP virtual float predict( const cv::Mat& sample, bool returnDFVal=false ) const;
CV_WRAP_AS(predict_all) virtual void predict( cv::InputArray samples, cv::OutputArray results ) const;
#endif

CV_WRAP virtual int get_support_vector_count() const;
virtual const float* get_support_vector(int i) const;
Expand Down Expand Up @@ -868,7 +862,6 @@ class CV_EXPORTS_W CvDTree : public CvStatModel
virtual CvDTreeNode* predict( const CvMat* sample, const CvMat* missingDataMask=0,
bool preprocessedInput=false ) const;

#ifndef SWIG
CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
Expand All @@ -878,7 +871,6 @@ class CV_EXPORTS_W CvDTree : public CvStatModel
CV_WRAP virtual CvDTreeNode* predict( const cv::Mat& sample, const cv::Mat& missingDataMask=cv::Mat(),
bool preprocessedInput=false ) const;
CV_WRAP virtual cv::Mat getVarImportance();
#endif

virtual const CvMat* get_var_importance();
CV_WRAP virtual void clear();
Expand Down Expand Up @@ -1011,7 +1003,6 @@ class CV_EXPORTS_W CvRTrees : public CvStatModel
virtual float predict( const CvMat* sample, const CvMat* missing = 0 ) const;
virtual float predict_prob( const CvMat* sample, const CvMat* missing = 0 ) const;

#ifndef SWIG
CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
Expand All @@ -1020,7 +1011,6 @@ class CV_EXPORTS_W CvRTrees : public CvStatModel
CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const;
CV_WRAP virtual float predict_prob( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const;
CV_WRAP virtual cv::Mat getVarImportance();
#endif

CV_WRAP virtual void clear();

Expand Down Expand Up @@ -1107,13 +1097,11 @@ class CV_EXPORTS_W CvERTrees : public CvRTrees
const CvMat* sampleIdx=0, const CvMat* varType=0,
const CvMat* missingDataMask=0,
CvRTParams params=CvRTParams());
#ifndef SWIG
CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
const cv::Mat& missingDataMask=cv::Mat(),
CvRTParams params=CvRTParams());
#endif
virtual bool train( CvMLData* data, CvRTParams params=CvRTParams() );
protected:
virtual std::string getName() const;
Expand Down Expand Up @@ -1220,7 +1208,6 @@ class CV_EXPORTS_W CvBoost : public CvStatModel
CvMat* weak_responses=0, CvSlice slice=CV_WHOLE_SEQ,
bool raw_mode=false, bool return_sum=false ) const;

#ifndef SWIG
CV_WRAP CvBoost( const cv::Mat& trainData, int tflag,
const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
Expand All @@ -1237,7 +1224,6 @@ class CV_EXPORTS_W CvBoost : public CvStatModel
CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing=cv::Mat(),
const cv::Range& slice=cv::Range::all(), bool rawMode=false,
bool returnSum=false ) const;
#endif

virtual float calc_error( CvMLData* _data, int type , std::vector<float> *resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR}

Expand Down Expand Up @@ -1904,7 +1890,6 @@ class CV_EXPORTS_W CvANN_MLP : public CvStatModel
int flags=0 );
virtual float predict( const CvMat* inputs, CV_OUT CvMat* outputs ) const;

#ifndef SWIG
CV_WRAP CvANN_MLP( const cv::Mat& layerSizes,
int activateFunc=CvANN_MLP::SIGMOID_SYM,
double fparam1=0, double fparam2=0 );
Expand All @@ -1919,7 +1904,6 @@ class CV_EXPORTS_W CvANN_MLP : public CvStatModel
int flags=0 );

CV_WRAP virtual float predict( const cv::Mat& inputs, CV_OUT cv::Mat& outputs ) const;
#endif

CV_WRAP virtual void clear();

Expand Down

0 comments on commit 42f7329

Please sign in to comment.