Skip to content

Commit

Permalink
Demonstrate loading and running a saved seq2seq model. (keras-team#9119)
Browse files Browse the repository at this point in the history
* Demonstrate loading and running a saved seq2seq model.

* formatting fixes

* formatting fixes
  • Loading branch information
simra authored and fchollet committed Jan 19, 2018
1 parent 2fbac5a commit 8350eb8
Show file tree
Hide file tree
Showing 2 changed files with 151 additions and 2 deletions.
4 changes: 2 additions & 2 deletions examples/lstm_seq2seq.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@
target_texts = []
input_characters = set()
target_characters = set()
lines = open(data_path).read().split('\n')
lines = open(data_path, 'r', encoding='utf-8').read().split('\n')
for line in lines[: min(num_samples, len(lines) - 1)]:
input_text, target_text = line.split('\t')
# We use "tab" as the "start sequence" character
Expand Down Expand Up @@ -220,7 +220,7 @@ def decode_sequence(input_seq):


for seq_index in range(100):
# Take one sequence (part of the training test)
# Take one sequence (part of the training set)
# for trying out decoding.
input_seq = encoder_input_data[seq_index: seq_index + 1]
decoded_sentence = decode_sequence(input_seq)
Expand Down
149 changes: 149 additions & 0 deletions examples/lstm_seq2seq_restore.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,149 @@
'''Restore a character-level sequence to sequence model from disk and use it
to generate predictions.
This script loads the s2s.h5 model saved by lstm_seq2seq.py and generates
sequences from it. It assumes that no changes have been made (for example:
latent_dim is unchanged, and the input data and model architecture are unchanged).
See lstm_seq2seq.py for more details on the model architecture and how
it is trained.
'''
from __future__ import print_function

from keras.models import Model, load_model
from keras.layers import Input
import numpy as np

batch_size = 64 # Batch size for training.
epochs = 100 # Number of epochs to train for.
latent_dim = 256 # Latent dimensionality of the encoding space.
num_samples = 10000 # Number of samples to train on.
# Path to the data txt file on disk.
data_path = 'fra-eng/fra.txt'

# Vectorize the data. We use the same approach as the training script.
# NOTE: the data must be identical, in order for the character -> integer
# mappings to be consistent.
# We omit encoding target_texts since they are not needed.
input_texts = []
target_texts = []
input_characters = set()
target_characters = set()
lines = open(data_path, 'r', encoding='utf-8').read().split('\n')
for line in lines[: min(num_samples, len(lines) - 1)]:
input_text, target_text = line.split('\t')
# We use "tab" as the "start sequence" character
# for the targets, and "\n" as "end sequence" character.
target_text = '\t' + target_text + '\n'
input_texts.append(input_text)
target_texts.append(target_text)
for char in input_text:
if char not in input_characters:
input_characters.add(char)
for char in target_text:
if char not in target_characters:
target_characters.add(char)

input_characters = sorted(list(input_characters))
target_characters = sorted(list(target_characters))
num_encoder_tokens = len(input_characters)
num_decoder_tokens = len(target_characters)
max_encoder_seq_length = max([len(txt) for txt in input_texts])
max_decoder_seq_length = max([len(txt) for txt in target_texts])

print('Number of samples:', len(input_texts))
print('Number of unique input tokens:', num_encoder_tokens)
print('Number of unique output tokens:', num_decoder_tokens)
print('Max sequence length for inputs:', max_encoder_seq_length)
print('Max sequence length for outputs:', max_decoder_seq_length)

input_token_index = dict(
[(char, i) for i, char in enumerate(input_characters)])
target_token_index = dict(
[(char, i) for i, char in enumerate(target_characters)])

encoder_input_data = np.zeros(
(len(input_texts), max_encoder_seq_length, num_encoder_tokens),
dtype='float32')

for i, input_text in enumerate(input_texts):
for t, char in enumerate(input_text):
encoder_input_data[i, t, input_token_index[char]] = 1.

# Restore the model and construct the encoder and decoder.
model = load_model('s2s.h5')

encoder_inputs = model.input[0] # input_1
encoder_outputs, state_h_enc, state_c_enc = model.layers[2].output # lstm_1
encoder_states = [state_h_enc, state_c_enc]
encoder_model = Model(encoder_inputs, encoder_states)

decoder_inputs = model.input[1] # input_2
decoder_state_input_h = Input(shape=(latent_dim,), name='input_3')
decoder_state_input_c = Input(shape=(latent_dim,), name='input_4')
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_lstm = model.layers[3]
decoder_outputs, state_h_dec, state_c_dec = decoder_lstm(
decoder_inputs, initial_state=decoder_states_inputs)
decoder_states = [state_h_dec, state_c_dec]
decoder_dense = model.layers[4]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = Model(
[decoder_inputs] + decoder_states_inputs,
[decoder_outputs] + decoder_states)

# Reverse-lookup token index to decode sequences back to
# something readable.
reverse_input_char_index = dict(
(i, char) for char, i in input_token_index.items())
reverse_target_char_index = dict(
(i, char) for char, i in target_token_index.items())


# Decodes an input sequence. Future work should support beam search.
def decode_sequence(input_seq):
# Encode the input as state vectors.
states_value = encoder_model.predict(input_seq)

# Generate empty target sequence of length 1.
target_seq = np.zeros((1, 1, num_decoder_tokens))
# Populate the first character of target sequence with the start character.
target_seq[0, 0, target_token_index['\t']] = 1.

# Sampling loop for a batch of sequences
# (to simplify, here we assume a batch of size 1).
stop_condition = False
decoded_sentence = ''
while not stop_condition:
output_tokens, h, c = decoder_model.predict(
[target_seq] + states_value)

# Sample a token
sampled_token_index = np.argmax(output_tokens[0, -1, :])
sampled_char = reverse_target_char_index[sampled_token_index]
decoded_sentence += sampled_char

# Exit condition: either hit max length
# or find stop character.
if (sampled_char == '\n' or
len(decoded_sentence) > max_decoder_seq_length):
stop_condition = True

# Update the target sequence (of length 1).
target_seq = np.zeros((1, 1, num_decoder_tokens))
target_seq[0, 0, sampled_token_index] = 1.

# Update states
states_value = [h, c]

return decoded_sentence


for seq_index in range(100):
# Take one sequence (part of the training set)
# for trying out decoding.
input_seq = encoder_input_data[seq_index: seq_index + 1]
decoded_sentence = decode_sequence(input_seq)
print('-')
print('Input sentence:', input_texts[seq_index])
print('Decoded sentence:', decoded_sentence)

0 comments on commit 8350eb8

Please sign in to comment.