Skip to content

alexander0042/infrapix

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

50 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Infrapix

Python library and command line tools for processing publiclab.org's Infragram images and movies. Here are two sample movies remixed from Chris Fastie's "Bee Pond Fuschia" Infrablue movie:

  1. NDVI with fixed value range (-1.0 to 1.0) and overlayed R,G,B,NDVI histograms: http://youtu.be/39gmZC9B-jg

  2. NDVI with dynamic range (vmin to vmax in each frame ) and overlayed R,G,B,NDVI histograms: http://youtu.be/3NEXxGdrEFc

Installation

Debian Linux system (though Windows and OS X should also be possible with slightly different initial steps):

  1. Install dependencies: sudo apt-get install git python-numpy python-matplotlib libav-tools ubuntu-restricted-extras

  2. Download lastest package from github:

    cd ~
    mkdir src
    cd src
    git clone https://github.com/Pioneer-Valley-Open-Science/infrapix.git
  1. Run the setup script:
    cd infrapix
    sudo python setup.py install

Converting an infrablue image to NDVI

  • Go to a directory with an infrablue movie and run, e.g.:

infrapix_single -i river.jpg --show_histogram -o ndvi_river.jpg

For a sample infrablue image as input, grab "river.jpg" here, or below (get it via 'right-click save-as'):

river.jpg

Running the above command should result in an image similar to the following:

river_NDVI.jpg

Converting an infrablue movie to NDVI

  1. Go to a directory with an infrablue movie and run, for example to get dynamic range: infrapix_render -i BeePondFuschia.mp4 --show_histogram -o BeePondFuschia_NDVI_hist_dynamic-range.mp4

    to get fixed range: infrapix_render -i BeePondFuschia.mp4 --vmin -1.0 --vmax 1.0 --show_histogram -o BeePondFuschia_NDVI_hist_fixed-range.mp4

  2. Wait a really long time... enjoy. Hint, run infrapix_render -h for help.

About

converting infragram vid files to NDVI

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.2%
  • Makefile 0.8%