Skip to content

Commit

Permalink
Merge pull request quantopian#361 from quantopian/perf-improvements
Browse files Browse the repository at this point in the history
Perf improvements
  • Loading branch information
dmichalowicz authored Apr 27, 2020
2 parents 0492c9d + 0d41461 commit 77084f1
Show file tree
Hide file tree
Showing 8 changed files with 696 additions and 776 deletions.
2 changes: 1 addition & 1 deletion alphalens/examples/tear_sheet_walk_through.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -1674,7 +1674,7 @@
"outputs": [],
"source": [
"quantile_factor = factor_data['factor_quantile']\n",
"turnover_period = '1D'"
"turnover_period = 1"
]
},
{
Expand Down
259 changes: 52 additions & 207 deletions alphalens/performance.py

Large diffs are not rendered by default.

27 changes: 16 additions & 11 deletions alphalens/plotting.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,11 +152,11 @@ def plot_turnover_table(autocorrelation_data, quantile_turnover):
for period in sorted(quantile_turnover.keys()):
for quantile, p_data in quantile_turnover[period].iteritems():
turnover_table.loc["Quantile {} Mean Turnover ".format(quantile),
"{}".format(period)] = p_data.mean()
"{}D".format(period)] = p_data.mean()
auto_corr = pd.DataFrame()
for period, p_data in autocorrelation_data.iteritems():
auto_corr.loc["Mean Factor Rank Autocorrelation",
"{}".format(period)] = p_data.mean()
"{}D".format(period)] = p_data.mean()

print("Turnover Analysis")
utils.print_table(turnover_table.apply(lambda x: x.round(3)))
Expand Down Expand Up @@ -607,7 +607,7 @@ def plot_factor_rank_auto_correlation(factor_autocorrelation,
if ax is None:
f, ax = plt.subplots(1, 1, figsize=(18, 6))

factor_autocorrelation.plot(title='{} Period Factor Rank Autocorrelation'
factor_autocorrelation.plot(title='{}D Period Factor Rank Autocorrelation'
.format(period), ax=ax)
ax.set(ylabel='Autocorrelation Coefficient', xlabel='')
ax.axhline(0.0, linestyle='-', color='black', lw=1)
Expand All @@ -629,7 +629,7 @@ def plot_top_bottom_quantile_turnover(quantile_turnover, period=1, ax=None):
quantile_turnover: pd.Dataframe
Quantile turnover (each DataFrame column a quantile).
period: int, optional
Period over which to calculate the turnover
Period over which to calculate the turnover.
ax : matplotlib.Axes, optional
Axes upon which to plot.
Expand All @@ -646,7 +646,7 @@ def plot_top_bottom_quantile_turnover(quantile_turnover, period=1, ax=None):
turnover = pd.DataFrame()
turnover['top quantile turnover'] = quantile_turnover[max_quantile]
turnover['bottom quantile turnover'] = quantile_turnover[min_quantile]
turnover.plot(title='{} Period Top and Bottom Quantile Turnover'
turnover.plot(title='{}D Period Top and Bottom Quantile Turnover'
.format(period), ax=ax, alpha=0.6, lw=0.8)
ax.set(ylabel='Proportion Of Names New To Quantile', xlabel="")

Expand Down Expand Up @@ -711,7 +711,11 @@ def plot_monthly_ic_heatmap(mean_monthly_ic, ax=None):
return ax


def plot_cumulative_returns(factor_returns, period, freq, title=None, ax=None):
def plot_cumulative_returns(factor_returns,
period,
freq=None,
title=None,
ax=None):
"""
Plots the cumulative returns of the returns series passed in.
Expand All @@ -720,7 +724,7 @@ def plot_cumulative_returns(factor_returns, period, freq, title=None, ax=None):
factor_returns : pd.Series
Period wise returns of dollar neutral portfolio weighted by factor
value.
period: pandas.Timedelta or string
period : pandas.Timedelta or string
Length of period for which the returns are computed (e.g. 1 day)
if 'period' is a string it must follow pandas.Timedelta constructor
format (e.g. '1 days', '1D', '30m', '3h', '1D1h', etc)
Expand All @@ -742,7 +746,7 @@ def plot_cumulative_returns(factor_returns, period, freq, title=None, ax=None):
if ax is None:
f, ax = plt.subplots(1, 1, figsize=(18, 6))

factor_returns = perf.cumulative_returns(factor_returns, period, freq)
factor_returns = perf.cumulative_returns(factor_returns)

factor_returns.plot(ax=ax, lw=3, color='forestgreen', alpha=0.6)
ax.set(ylabel='Cumulative Returns',
Expand All @@ -756,7 +760,7 @@ def plot_cumulative_returns(factor_returns, period, freq, title=None, ax=None):

def plot_cumulative_returns_by_quantile(quantile_returns,
period,
freq,
freq=None,
ax=None):
"""
Plots the cumulative returns of various factor quantiles.
Expand All @@ -765,7 +769,7 @@ def plot_cumulative_returns_by_quantile(quantile_returns,
----------
quantile_returns : pd.DataFrame
Returns by factor quantile
period: pandas.Timedelta or string
period : pandas.Timedelta or string
Length of period for which the returns are computed (e.g. 1 day)
if 'period' is a string it must follow pandas.Timedelta constructor
format (e.g. '1 days', '1D', '30m', '3h', '1D1h', etc)
Expand All @@ -787,7 +791,8 @@ def plot_cumulative_returns_by_quantile(quantile_returns,

ret_wide = quantile_returns.unstack('factor_quantile')

cum_ret = ret_wide.apply(perf.cumulative_returns, period=period, freq=freq)
cum_ret = ret_wide.apply(perf.cumulative_returns)

cum_ret = cum_ret.loc[:, ::-1] # we want negative quantiles as 'red'

cum_ret.plot(lw=2, ax=ax, cmap=cm.coolwarm)
Expand Down
Loading

0 comments on commit 77084f1

Please sign in to comment.