forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add bert unittest (PaddlePaddle#248)
* add bert modeling tests * add expensive decorator to decorate test case * add expensive from_pretrained test * add expensive test in bert and bigbird * add bert tokenizer test * add truncate test to coverage tokenizer_utils * expensive->slow * add unittest.main
- Loading branch information
Showing
6 changed files
with
709 additions
and
57 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,243 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import numpy as np | ||
import os | ||
import unittest | ||
import paddle | ||
import copy | ||
|
||
from paddlenlp.transformers import BertModel, BertForPretraining, BertPretrainingCriterion | ||
from paddlenlp.transformers import BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification | ||
|
||
from common_test import CommonTest | ||
from util import softmax_with_cross_entropy, slow | ||
import unittest | ||
|
||
|
||
def create_input_data(config, seed=None): | ||
''' | ||
the generated input data will be same if a specified seed is set | ||
''' | ||
if seed is not None: | ||
np.random.seed(seed) | ||
|
||
input_ids = np.random.randint( | ||
low=0, | ||
high=config['vocab_size'], | ||
size=(config["batch_size"], config["seq_len"])) | ||
num_to_predict = int(config["seq_len"] * 0.15) | ||
masked_lm_positions = np.random.choice( | ||
config["seq_len"], (config["batch_size"], num_to_predict), | ||
replace=False) | ||
masked_lm_positions = np.sort(masked_lm_positions) | ||
pred_padding_len = config["seq_len"] - num_to_predict | ||
temp_masked_lm_positions = np.full( | ||
masked_lm_positions.size, 0, dtype=np.int32) | ||
mask_token_num = 0 | ||
for i, x in enumerate(masked_lm_positions): | ||
for j, pos in enumerate(x): | ||
temp_masked_lm_positions[mask_token_num] = i * config[ | ||
"seq_len"] + pos | ||
mask_token_num += 1 | ||
masked_lm_positions = temp_masked_lm_positions | ||
return input_ids, masked_lm_positions | ||
|
||
|
||
class NpBertPretrainingCriterion(object): | ||
def __init__(self, vocab_size): | ||
self.vocab_size = vocab_size | ||
|
||
def __call__(self, prediction_scores, seq_relationship_score, | ||
masked_lm_labels, next_sentence_labels, masked_lm_scale): | ||
masked_lm_loss = softmax_with_cross_entropy( | ||
prediction_scores, masked_lm_labels, ignore_index=-1) | ||
masked_lm_loss = masked_lm_loss / masked_lm_scale | ||
next_sentence_loss = softmax_with_cross_entropy(seq_relationship_score, | ||
next_sentence_labels) | ||
return np.sum(masked_lm_loss) + np.mean(next_sentence_loss) | ||
|
||
|
||
class TestBertForSequenceClassification(CommonTest): | ||
def set_input(self): | ||
self.config = copy.deepcopy(BertModel.pretrained_init_configuration[ | ||
'bert-base-uncased']) | ||
self.config['num_hidden_layers'] = 2 | ||
self.config['vocab_size'] = 512 | ||
self.config['attention_probs_dropout_prob'] = 0.0 | ||
self.config['hidden_dropout_prob'] = 0.0 | ||
self.config['intermediate_size'] = 1024 | ||
self.config['seq_len'] = 64 | ||
self.config['batch_size'] = 3 | ||
self.config['max_position_embeddings'] = 512 | ||
self.input_ids, self.masked_lm_positions = create_input_data( | ||
self.config) | ||
|
||
def set_output(self): | ||
self.expected_shape = (self.config['batch_size'], 2) | ||
|
||
def set_model_class(self): | ||
self.TEST_MODEL_CLASS = BertForSequenceClassification | ||
|
||
def setUp(self): | ||
self.set_model_class() | ||
self.set_input() | ||
self.set_output() | ||
|
||
def check_testcase(self): | ||
self.check_output_equal(self.output.numpy().shape, self.expected_shape) | ||
|
||
def test_forward(self): | ||
config = copy.deepcopy(self.config) | ||
del config['batch_size'] | ||
del config['seq_len'] | ||
|
||
bert = BertModel(**config) | ||
model = self.TEST_MODEL_CLASS(bert) | ||
input_ids = paddle.to_tensor(self.input_ids) | ||
self.output = model(input_ids) | ||
self.check_testcase() | ||
|
||
|
||
class TestBertForTokenClassification(TestBertForSequenceClassification): | ||
def set_model_class(self): | ||
self.TEST_MODEL_CLASS = BertForTokenClassification | ||
|
||
def set_output(self): | ||
self.expected_shape = (self.config['batch_size'], | ||
self.config['seq_len'], 2) | ||
|
||
|
||
class TestBertForPretraining(TestBertForSequenceClassification): | ||
def set_model_class(self): | ||
self.TEST_MODEL_CLASS = BertForPretraining | ||
|
||
def set_output(self): | ||
self.expected_seq_shape = (self.masked_lm_positions.shape[0], | ||
self.config['vocab_size']) | ||
self.expected_pooled_shape = (self.config['batch_size'], 2) | ||
|
||
def test_forward(self): | ||
config = copy.deepcopy(self.config) | ||
del config['batch_size'] | ||
del config['seq_len'] | ||
|
||
bert = BertModel(**config) | ||
model = self.TEST_MODEL_CLASS(bert) | ||
input_ids = paddle.to_tensor(self.input_ids) | ||
masked_lm_positions = paddle.to_tensor(self.masked_lm_positions) | ||
self.output = model(input_ids, masked_positions=masked_lm_positions) | ||
self.check_testcase() | ||
|
||
def check_testcase(self): | ||
self.check_output_equal(self.output[0].numpy().shape, | ||
self.expected_seq_shape) | ||
self.check_output_equal(self.output[1].numpy().shape, | ||
self.expected_pooled_shape) | ||
|
||
|
||
class TestBertForQuestionAnswering(TestBertForSequenceClassification): | ||
def set_model_class(self): | ||
self.TEST_MODEL_CLASS = BertForQuestionAnswering | ||
|
||
def set_output(self): | ||
self.expected_start_logit_shape = (self.config['batch_size'], | ||
self.config['seq_len']) | ||
self.expected_end_logit_shape = (self.config['batch_size'], | ||
self.config['seq_len']) | ||
|
||
def check_testcase(self): | ||
self.check_output_equal(self.output[0].numpy().shape, | ||
self.expected_start_logit_shape) | ||
self.check_output_equal(self.output[1].numpy().shape, | ||
self.expected_end_logit_shape) | ||
|
||
|
||
class TestBertPretrainingCriterion(CommonTest): | ||
def setUp(self): | ||
self.config['vocab_size'] = 1024 | ||
self.criterion = BertPretrainingCriterion(**self.config) | ||
self.np_criterion = NpBertPretrainingCriterion(**self.config) | ||
|
||
def _construct_input_data(self, mask_num, vocab_size, batch_size): | ||
prediction_scores = np.random.rand( | ||
mask_num, vocab_size).astype(paddle.get_default_dtype()) | ||
seq_relationship_score = np.random.rand( | ||
batch_size, 2).astype(paddle.get_default_dtype()) | ||
masked_lm_labels = np.random.randint(0, vocab_size, (mask_num, 1)) | ||
next_sentence_labels = np.random.randint(0, 2, (batch_size, 1)) | ||
masked_lm_scale = 1.0 | ||
masked_lm_weights = np.random.randint( | ||
0, 2, (mask_num)).astype(paddle.get_default_dtype()) | ||
return prediction_scores, seq_relationship_score, masked_lm_labels, \ | ||
next_sentence_labels, masked_lm_scale, masked_lm_weights | ||
|
||
def test_forward(self): | ||
np_prediction_score, np_seq_relationship_score, np_masked_lm_labels, \ | ||
np_next_sentence_labels, masked_lm_scale, np_masked_lm_weights \ | ||
= self._construct_input_data(20, self.config['vocab_size'], 4) | ||
|
||
prediction_score = paddle.to_tensor(np_prediction_score) | ||
seq_relationship_score = paddle.to_tensor(np_seq_relationship_score) | ||
masked_lm_labels = paddle.to_tensor(np_masked_lm_labels) | ||
next_sentence_labels = paddle.to_tensor(np_next_sentence_labels) | ||
masked_lm_weights = paddle.to_tensor(np_masked_lm_weights) | ||
|
||
np_loss = self.np_criterion( | ||
np_prediction_score, np_seq_relationship_score, np_masked_lm_labels, | ||
np_next_sentence_labels, masked_lm_scale) | ||
loss = self.criterion(prediction_score, seq_relationship_score, | ||
masked_lm_labels, next_sentence_labels, | ||
masked_lm_scale) | ||
self.check_output_equal(np_loss, loss.numpy()[0]) | ||
|
||
|
||
class TestBertFromPretrain(CommonTest): | ||
@slow | ||
def test_bert_base_uncased(self): | ||
model = BertModel.from_pretrained( | ||
'bert-base-uncased', | ||
attention_probs_dropout_prob=0.0, | ||
hidden_dropout_prob=0.0) | ||
self.config = copy.deepcopy(model.config) | ||
self.config['seq_len'] = 32 | ||
self.config['batch_size'] = 3 | ||
|
||
input_ids, _ = create_input_data(self.config, 102) | ||
input_ids = paddle.to_tensor(input_ids) | ||
output = model(input_ids) | ||
|
||
expected_seq_shape = (self.config['batch_size'], self.config['seq_len'], | ||
self.config['hidden_size']) | ||
expected_pooled_shape = (self.config['batch_size'], | ||
self.config['hidden_size']) | ||
self.check_output_equal(output[0].numpy().shape, expected_seq_shape) | ||
self.check_output_equal(output[1].numpy().shape, expected_pooled_shape) | ||
expected_seq_slice = np.array([[0.17383946, 0.09206937, 0.45788339], | ||
[-0.28287640, 0.06244858, 0.54864359], | ||
[-0.54589444, 0.04811822, 0.50559914]]) | ||
# There's output diff about 1e-6 between cpu and gpu | ||
self.check_output_equal( | ||
output[0].numpy()[0, 0:3, 0:3], expected_seq_slice, atol=1e-6) | ||
|
||
expected_pooled_slice = np.array( | ||
[[-0.67418981, -0.07148759, 0.85799801], | ||
[-0.62072051, -0.08452632, 0.96691507], | ||
[-0.74019802, -0.10187808, 0.95353240]]) | ||
self.check_output_equal( | ||
output[1].numpy()[0:3, 0:3], expected_pooled_slice, atol=1e-6) | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |
Oops, something went wrong.