Skip to content

This is analysis for a blog project required in Udacity Data Scientist Nanodegree. It uses several datasets to analyze with respect to the global temperature anomaly.

Notifications You must be signed in to change notification settings

ambreen2006/Global-Temperature-Trend

Repository files navigation

Project Motivation

This is analysis for a blog project required in Udacity Data Scientist Nanodegree. It uses several datasets to analyze with respect to the global temperature anomaly.

Medium: Link to Medium Post

Link to Github Repository: https://github.com/ambreen2006/Global-Temperature-Trend

Dataset

  • Various datasets are obtained and sources are documented in the reference section.
  • Each variable used is explained and analyzed in the notebook Global Temperature Trend.ipynb

Project Files

  • Analysis file: Global Temperature Trend.ipynb
  • Exported HTML: Global Temperature Trend.html
  • Data files: Resource and reference section provide the links for all the dataset.
    • Global Temperature: GLB.Ts+dSST.csv
    • ENSO: enso.csv
    • AOD: aod_annual.csv
    • AGGI: AGGI_Table.csv
    • TSI: TSI composite_42_65_1709.txt
  • Image files for concept explanation
    • ENSO_-_El_Niño.png
    • ENSO_Normal.png

Data preparation

  • NaN values are removed where applicable
  • Data is standardized using standard scaler

Analysis and Modeling

  • The output variable's timeline is visualized seperately as well as with explanatory variables
  • LinearRegression model is created using scikit to infer coefficients
  • Different correlation methods with p-values are considered to understand the variables.

Summary of the Results

  • Linear regression model for the global temperature trend was created.
  • The average rate of increase in global temperature per decade after 1981 is much higher then what it is since 1880 per decade.
  • Greenhouse gases play a significant role in the increasing temperature.
  • Stratospheric aerosols cools the temperature.
  • A multivariable regression model was created and evaluated.

Resources and DataSets Sources:

[1] Herring, S. C., N. Christidis, A. Hoell, M. P. Hoerling, and P. A. Stott, Eds., 2020: Explaining Extreme Events of 2018 from a Climate Perspective. Bull. Amer. Meteor. Soc., 101 (1), S1–S128, doi:10.1175/BAMS-ExplainingExtremeEvents2018.1.

[2] Herring, S. C., A. Hoell, M. P. Hoerling, J. P. Kossin, C. J. Schreck III, and P. A. Stott, Eds., 2016: Explaining Extreme Events of 2015 from a Climate Perspective. Bull. Amer. Meteor. Soc., 97 (12), S1–S145.

[3] GISTEMP GISTEMP Team, 2020: GISS Surface Temperature Analysis (GISTEMP), version 4. NASA Goddard Institute for Space Studies. Dataset accessed 20YY-MM-DD at https://data.giss.nasa.gov/gistemp/. Lenssen, N., G. Schmidt, J. Hansen, M. Menne, A. Persin, R. Ruedy, and D. Zyss, 2019: Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos., 124, no. 12, 6307–6326, doi:10.1029/2018JD029522.

[4] AGGI https://www.esrl.noaa.gov/gmd/aggi/aggi.html) Graphic: The Greenhouse Effect https://climate.nasa.gov/climate_resources/188/graphic-the-greenhouse-effect/ Greenhouse effect https://courses.edx.org/assets/courseware/v1/f40bce9bb2f3570cc65b5303558ab895/asset-v1:SDGAcademyX+CCSI001+3T2019+type@asset+block/Module_1_Reading_5.pdf

[5] TSI ftp://ftp.pmodwrc.ch/pub/data/irradiance/composite/ https://www.pmodwrc.ch/en/home/[6] Interpreting Correlations

[6] Interpreting correlations https://towardsdatascience.com/eveything-you-need-to-know-about-interpreting-correlations-2c485841c0b8

[7] ENSO

Graphics https://en.wikipedia.org/wiki/El_Ni%C3%B1o#/media/File:ENSO_-_normal.svg

Graphics https://en.wikipedia.org/wiki/El_Ni%C3%B1o#/media/File:ENSO_-_El_Ni%C3%B1o.svg

https://www.nationalgeographic.org/encyclopedia/el-nino/ https://www.nationalgeographic.org/encyclopedia/la-nina/ https://psl.noaa.gov/cgi-bin/data/climateindices/corr.pl?tstype1=27&custname1=&custtitle1=&tstype2=0&custname2=&custtitle2=&year1=&year2=&itypea=0&y1=&y2=&plotstyle=0&length=&lag=&iall=0&iseas=1&mon1=0&mon2=11&anom=1&climo1_yr1=&climo1_yr2=&climo2_yr1=&climo2_yr2=&Submit=Calculate+Results https://www.climate.gov/news-features/understanding-climate/el-ni%C3%B1o-and-la-ni%C3%B1a-frequently-asked-questions http://faculty.washington.edu/kessler/occasionally-asked-questions.html#q1 https://www.youtube.com/watch?v=dzat16LMtQk https://psl.noaa.gov/enso/mei/

About

This is analysis for a blog project required in Udacity Data Scientist Nanodegree. It uses several datasets to analyze with respect to the global temperature anomaly.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published