forked from privacy-scaling-explorations/sonobe
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add external inputs logic to F function/circuit. Add an example of us…
…age with external inputs too. (privacy-scaling-explorations#78) * Add external inputs logic to F function/circuit. Add an example of usage with external inputs too. * Add examples run into CI
- Loading branch information
Showing
10 changed files
with
287 additions
and
37 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,213 @@ | ||
#![allow(non_snake_case)] | ||
#![allow(non_upper_case_globals)] | ||
#![allow(non_camel_case_types)] | ||
#![allow(clippy::upper_case_acronyms)] | ||
|
||
use ark_crypto_primitives::{ | ||
crh::{ | ||
poseidon::constraints::{CRHGadget, CRHParametersVar}, | ||
poseidon::CRH, | ||
CRHScheme, CRHSchemeGadget, | ||
}, | ||
sponge::{poseidon::PoseidonConfig, Absorb}, | ||
}; | ||
use ark_ff::PrimeField; | ||
use ark_pallas::{constraints::GVar, Fr, Projective}; | ||
use ark_r1cs_std::fields::fp::FpVar; | ||
use ark_r1cs_std::{alloc::AllocVar, fields::FieldVar}; | ||
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError}; | ||
use ark_std::Zero; | ||
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2}; | ||
use core::marker::PhantomData; | ||
use std::time::Instant; | ||
|
||
use folding_schemes::commitment::pedersen::Pedersen; | ||
use folding_schemes::folding::nova::Nova; | ||
use folding_schemes::frontend::FCircuit; | ||
use folding_schemes::{Error, FoldingScheme}; | ||
mod utils; | ||
use folding_schemes::transcript::poseidon::poseidon_test_config; | ||
use utils::test_nova_setup; | ||
|
||
/// This is the circuit that we want to fold, it implements the FCircuit trait. The parameter z_i | ||
/// denotes the current state which contains 2 elements, and z_{i+1} denotes the next state which | ||
/// we get by applying the step. | ||
/// | ||
/// In this example we set the state to be the previous state together with an external input, and | ||
/// the new state is an array which contains the new state and a zero which will be ignored. | ||
/// | ||
/// This is useful for example if we want to fold multiple verifications of signatures, where the | ||
/// circuit F checks the signature and is folded for each of the signatures and public keys. To | ||
/// keep things simpler, the following example does not verify signatures but does a similar | ||
/// approach with a chain of hashes, where each iteration hashes the previous step output (z_i) | ||
/// together with an external input (w_i). | ||
/// | ||
/// w_1 w_2 w_3 w_4 | ||
/// │ │ │ │ | ||
/// ▼ ▼ ▼ ▼ | ||
/// ┌─┐ ┌─┐ ┌─┐ ┌─┐ | ||
/// ─────►│F├────►│F├────►│F├────►│F├────► | ||
/// z_1 └─┘ z_2 └─┘ z_3 └─┘ z_4 └─┘ z_5 | ||
/// | ||
/// | ||
/// where each F is: | ||
/// w_i | ||
/// │ ┌────────────────────┐ | ||
/// │ │FCircuit │ | ||
/// │ │ │ | ||
/// └────►│ h =Hash(z_i[0],w_i)│ | ||
/// │ │ =Hash(v, w_i) │ | ||
/// ────────►│ │ ├───────► | ||
/// z_i=[v,0] │ └──►z_{i+1}=[h, 0] │ z_{i+1}=[h,0] | ||
/// │ │ | ||
/// └────────────────────┘ | ||
/// | ||
/// where each w_i value is set at the external_inputs array. | ||
/// | ||
/// The last state z_i is used together with the external input w_i as inputs to compute the new | ||
/// state z_{i+1}. | ||
/// The function F will output the new state in an array of two elements, where the second element | ||
/// is a 0. In other words, z_{i+1} = [F([z_i, w_i]), 0], and the 0 will be replaced by w_{i+1} in | ||
/// the next iteration, so z_{i+2} = [F([z_{i+1}, w_{i+1}]), 0]. | ||
#[derive(Clone, Debug)] | ||
pub struct ExternalInputsCircuits<F: PrimeField> | ||
where | ||
F: Absorb, | ||
{ | ||
_f: PhantomData<F>, | ||
poseidon_config: PoseidonConfig<F>, | ||
external_inputs: Vec<F>, | ||
} | ||
impl<F: PrimeField> FCircuit<F> for ExternalInputsCircuits<F> | ||
where | ||
F: Absorb, | ||
{ | ||
type Params = (PoseidonConfig<F>, Vec<F>); // where Vec<F> contains the external inputs | ||
|
||
fn new(params: Self::Params) -> Self { | ||
Self { | ||
_f: PhantomData, | ||
poseidon_config: params.0, | ||
external_inputs: params.1, | ||
} | ||
} | ||
fn state_len(&self) -> usize { | ||
2 | ||
} | ||
|
||
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new | ||
/// z_{i+1} | ||
fn step_native(&self, i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> { | ||
let input: [F; 2] = [z_i[0], self.external_inputs[i]]; | ||
let h = CRH::<F>::evaluate(&self.poseidon_config, input).unwrap(); | ||
Ok(vec![h, F::zero()]) | ||
} | ||
|
||
/// generates the constraints for the step of F for the given z_i | ||
fn generate_step_constraints( | ||
&self, | ||
cs: ConstraintSystemRef<F>, | ||
i: usize, | ||
z_i: Vec<FpVar<F>>, | ||
) -> Result<Vec<FpVar<F>>, SynthesisError> { | ||
let crh_params = | ||
CRHParametersVar::<F>::new_constant(cs.clone(), self.poseidon_config.clone())?; | ||
let external_inputVar = | ||
FpVar::<F>::new_witness(cs.clone(), || Ok(self.external_inputs[i])).unwrap(); | ||
let input: [FpVar<F>; 2] = [z_i[0].clone(), external_inputVar.clone()]; | ||
let h = CRHGadget::<F>::evaluate(&crh_params, &input)?; | ||
Ok(vec![h, FpVar::<F>::zero()]) | ||
} | ||
} | ||
|
||
/// cargo test --example external_inputs | ||
#[cfg(test)] | ||
pub mod tests { | ||
use super::*; | ||
use ark_r1cs_std::R1CSVar; | ||
use ark_relations::r1cs::ConstraintSystem; | ||
|
||
// test to check that the ExternalInputsCircuits computes the same values inside and outside the circuit | ||
#[test] | ||
fn test_f_circuit() { | ||
let poseidon_config = poseidon_test_config::<Fr>(); | ||
|
||
let cs = ConstraintSystem::<Fr>::new_ref(); | ||
|
||
let circuit = ExternalInputsCircuits::<Fr>::new((poseidon_config, vec![Fr::from(3_u32)])); | ||
let z_i = vec![Fr::from(1_u32), Fr::zero()]; | ||
|
||
let z_i1 = circuit.step_native(0, z_i.clone()).unwrap(); | ||
|
||
let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap(); | ||
let computed_z_i1Var = circuit | ||
.generate_step_constraints(cs.clone(), 0, z_iVar.clone()) | ||
.unwrap(); | ||
assert_eq!(computed_z_i1Var.value().unwrap(), z_i1); | ||
} | ||
} | ||
|
||
/// cargo run --release --example external_inputs | ||
fn main() { | ||
let num_steps = 5; | ||
let initial_state = vec![Fr::from(1_u32), Fr::zero()]; | ||
|
||
// set the external inputs to be used at each folding step | ||
let external_inputs = vec![ | ||
Fr::from(3_u32), | ||
Fr::from(33_u32), | ||
Fr::from(73_u32), | ||
Fr::from(103_u32), | ||
Fr::from(125_u32), | ||
]; | ||
assert_eq!(external_inputs.len(), num_steps); | ||
|
||
let poseidon_config = poseidon_test_config::<Fr>(); | ||
let F_circuit = ExternalInputsCircuits::<Fr>::new((poseidon_config, external_inputs)); | ||
|
||
println!("Prepare Nova ProverParams & VerifierParams"); | ||
let (prover_params, verifier_params) = | ||
test_nova_setup::<ExternalInputsCircuits<Fr>>(F_circuit.clone()); | ||
|
||
/// The idea here is that eventually we could replace the next line chunk that defines the | ||
/// `type NOVA = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme` | ||
/// trait, and the rest of our code would be working without needing to be updated. | ||
type NOVA = Nova< | ||
Projective, | ||
GVar, | ||
Projective2, | ||
GVar2, | ||
ExternalInputsCircuits<Fr>, | ||
Pedersen<Projective>, | ||
Pedersen<Projective2>, | ||
>; | ||
|
||
println!("Initialize FoldingScheme"); | ||
let mut folding_scheme = NOVA::init(&prover_params, F_circuit, initial_state.clone()).unwrap(); | ||
|
||
// compute a step of the IVC | ||
for i in 0..num_steps { | ||
let start = Instant::now(); | ||
folding_scheme.prove_step().unwrap(); | ||
println!("Nova::prove_step {}: {:?}", i, start.elapsed()); | ||
} | ||
println!( | ||
"state at last step (after {} iterations): {:?}", | ||
num_steps, | ||
folding_scheme.state() | ||
); | ||
|
||
let (running_instance, incoming_instance, cyclefold_instance) = folding_scheme.instances(); | ||
|
||
println!("Run the Nova's IVC verifier"); | ||
NOVA::verify( | ||
verifier_params, | ||
initial_state.clone(), | ||
folding_scheme.state(), // latest state | ||
Fr::from(num_steps as u32), | ||
running_instance, | ||
incoming_instance, | ||
cyclefold_instance, | ||
) | ||
.unwrap(); | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.