Skip to content

Commit

Permalink
Add external inputs logic to F function/circuit. Add an example of us…
Browse files Browse the repository at this point in the history
…age with external inputs too. (privacy-scaling-explorations#78)

* Add external inputs logic to F function/circuit. Add an example of usage with external inputs too.

* Add examples run into CI
  • Loading branch information
arnaucube authored Mar 11, 2024
1 parent 602a367 commit a4905c8
Show file tree
Hide file tree
Showing 10 changed files with 287 additions and 37 deletions.
13 changes: 13 additions & 0 deletions .github/workflows/ci.yml
Original file line number Diff line number Diff line change
Expand Up @@ -72,6 +72,18 @@ jobs:
run: |
cargo test --doc
examples:
if: github.event.pull_request.draft == false
name: Run examples & examples tests
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- uses: actions-rs/toolchain@v1
- name: Run examples tests
run: cargo test --examples
- name: Run examples
run: cargo run --release --example 2>&1 | grep -E '^ ' | xargs -n1 cargo run --release --example

fmt:
if: github.event.pull_request.draft == false
name: Rustfmt
Expand Down Expand Up @@ -104,6 +116,7 @@ jobs:
args: --all-targets --all-features -- -D warnings

typos:
if: github.event.pull_request.draft == false
name: Spell Check with Typos
runs-on: ubuntu-latest
steps:
Expand Down
213 changes: 213 additions & 0 deletions folding-schemes/examples/external_inputs.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,213 @@
#![allow(non_snake_case)]
#![allow(non_upper_case_globals)]
#![allow(non_camel_case_types)]
#![allow(clippy::upper_case_acronyms)]

use ark_crypto_primitives::{
crh::{
poseidon::constraints::{CRHGadget, CRHParametersVar},
poseidon::CRH,
CRHScheme, CRHSchemeGadget,
},
sponge::{poseidon::PoseidonConfig, Absorb},
};
use ark_ff::PrimeField;
use ark_pallas::{constraints::GVar, Fr, Projective};
use ark_r1cs_std::fields::fp::FpVar;
use ark_r1cs_std::{alloc::AllocVar, fields::FieldVar};
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
use ark_std::Zero;
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
use core::marker::PhantomData;
use std::time::Instant;

use folding_schemes::commitment::pedersen::Pedersen;
use folding_schemes::folding::nova::Nova;
use folding_schemes::frontend::FCircuit;
use folding_schemes::{Error, FoldingScheme};
mod utils;
use folding_schemes::transcript::poseidon::poseidon_test_config;
use utils::test_nova_setup;

/// This is the circuit that we want to fold, it implements the FCircuit trait. The parameter z_i
/// denotes the current state which contains 2 elements, and z_{i+1} denotes the next state which
/// we get by applying the step.
///
/// In this example we set the state to be the previous state together with an external input, and
/// the new state is an array which contains the new state and a zero which will be ignored.
///
/// This is useful for example if we want to fold multiple verifications of signatures, where the
/// circuit F checks the signature and is folded for each of the signatures and public keys. To
/// keep things simpler, the following example does not verify signatures but does a similar
/// approach with a chain of hashes, where each iteration hashes the previous step output (z_i)
/// together with an external input (w_i).
///
/// w_1 w_2 w_3 w_4
/// │ │ │ │
/// ▼ ▼ ▼ ▼
/// ┌─┐ ┌─┐ ┌─┐ ┌─┐
/// ─────►│F├────►│F├────►│F├────►│F├────►
/// z_1 └─┘ z_2 └─┘ z_3 └─┘ z_4 └─┘ z_5
///
///
/// where each F is:
/// w_i
/// │ ┌────────────────────┐
/// │ │FCircuit │
/// │ │ │
/// └────►│ h =Hash(z_i[0],w_i)│
/// │ │ =Hash(v, w_i) │
/// ────────►│ │ ├───────►
/// z_i=[v,0] │ └──►z_{i+1}=[h, 0] │ z_{i+1}=[h,0]
/// │ │
/// └────────────────────┘
///
/// where each w_i value is set at the external_inputs array.
///
/// The last state z_i is used together with the external input w_i as inputs to compute the new
/// state z_{i+1}.
/// The function F will output the new state in an array of two elements, where the second element
/// is a 0. In other words, z_{i+1} = [F([z_i, w_i]), 0], and the 0 will be replaced by w_{i+1} in
/// the next iteration, so z_{i+2} = [F([z_{i+1}, w_{i+1}]), 0].
#[derive(Clone, Debug)]
pub struct ExternalInputsCircuits<F: PrimeField>
where
F: Absorb,
{
_f: PhantomData<F>,
poseidon_config: PoseidonConfig<F>,
external_inputs: Vec<F>,
}
impl<F: PrimeField> FCircuit<F> for ExternalInputsCircuits<F>
where
F: Absorb,
{
type Params = (PoseidonConfig<F>, Vec<F>); // where Vec<F> contains the external inputs

fn new(params: Self::Params) -> Self {
Self {
_f: PhantomData,
poseidon_config: params.0,
external_inputs: params.1,
}
}
fn state_len(&self) -> usize {
2
}

/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
/// z_{i+1}
fn step_native(&self, i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
let input: [F; 2] = [z_i[0], self.external_inputs[i]];
let h = CRH::<F>::evaluate(&self.poseidon_config, input).unwrap();
Ok(vec![h, F::zero()])
}

/// generates the constraints for the step of F for the given z_i
fn generate_step_constraints(
&self,
cs: ConstraintSystemRef<F>,
i: usize,
z_i: Vec<FpVar<F>>,
) -> Result<Vec<FpVar<F>>, SynthesisError> {
let crh_params =
CRHParametersVar::<F>::new_constant(cs.clone(), self.poseidon_config.clone())?;
let external_inputVar =
FpVar::<F>::new_witness(cs.clone(), || Ok(self.external_inputs[i])).unwrap();
let input: [FpVar<F>; 2] = [z_i[0].clone(), external_inputVar.clone()];
let h = CRHGadget::<F>::evaluate(&crh_params, &input)?;
Ok(vec![h, FpVar::<F>::zero()])
}
}

/// cargo test --example external_inputs
#[cfg(test)]
pub mod tests {
use super::*;
use ark_r1cs_std::R1CSVar;
use ark_relations::r1cs::ConstraintSystem;

// test to check that the ExternalInputsCircuits computes the same values inside and outside the circuit
#[test]
fn test_f_circuit() {
let poseidon_config = poseidon_test_config::<Fr>();

let cs = ConstraintSystem::<Fr>::new_ref();

let circuit = ExternalInputsCircuits::<Fr>::new((poseidon_config, vec![Fr::from(3_u32)]));
let z_i = vec![Fr::from(1_u32), Fr::zero()];

let z_i1 = circuit.step_native(0, z_i.clone()).unwrap();

let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
let computed_z_i1Var = circuit
.generate_step_constraints(cs.clone(), 0, z_iVar.clone())
.unwrap();
assert_eq!(computed_z_i1Var.value().unwrap(), z_i1);
}
}

/// cargo run --release --example external_inputs
fn main() {
let num_steps = 5;
let initial_state = vec![Fr::from(1_u32), Fr::zero()];

// set the external inputs to be used at each folding step
let external_inputs = vec![
Fr::from(3_u32),
Fr::from(33_u32),
Fr::from(73_u32),
Fr::from(103_u32),
Fr::from(125_u32),
];
assert_eq!(external_inputs.len(), num_steps);

let poseidon_config = poseidon_test_config::<Fr>();
let F_circuit = ExternalInputsCircuits::<Fr>::new((poseidon_config, external_inputs));

println!("Prepare Nova ProverParams & VerifierParams");
let (prover_params, verifier_params) =
test_nova_setup::<ExternalInputsCircuits<Fr>>(F_circuit.clone());

/// The idea here is that eventually we could replace the next line chunk that defines the
/// `type NOVA = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
/// trait, and the rest of our code would be working without needing to be updated.
type NOVA = Nova<
Projective,
GVar,
Projective2,
GVar2,
ExternalInputsCircuits<Fr>,
Pedersen<Projective>,
Pedersen<Projective2>,
>;

println!("Initialize FoldingScheme");
let mut folding_scheme = NOVA::init(&prover_params, F_circuit, initial_state.clone()).unwrap();

// compute a step of the IVC
for i in 0..num_steps {
let start = Instant::now();
folding_scheme.prove_step().unwrap();
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
}
println!(
"state at last step (after {} iterations): {:?}",
num_steps,
folding_scheme.state()
);

let (running_instance, incoming_instance, cyclefold_instance) = folding_scheme.instances();

println!("Run the Nova's IVC verifier");
NOVA::verify(
verifier_params,
initial_state.clone(),
folding_scheme.state(), // latest state
Fr::from(num_steps as u32),
running_instance,
incoming_instance,
cyclefold_instance,
)
.unwrap();
}
15 changes: 8 additions & 7 deletions folding-schemes/examples/multi_inputs.rs
Original file line number Diff line number Diff line change
Expand Up @@ -35,13 +35,13 @@ impl<F: PrimeField> FCircuit<F> for MultiInputsFCircuit<F> {
fn new(_params: Self::Params) -> Self {
Self { _f: PhantomData }
}
fn state_len(self) -> usize {
fn state_len(&self) -> usize {
5
}

/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
/// z_{i+1}
fn step_native(self, z_i: Vec<F>) -> Result<Vec<F>, Error> {
fn step_native(&self, _i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
let a = z_i[0] + F::from(4_u32);
let b = z_i[1] + F::from(40_u32);
let c = z_i[2] * F::from(4_u32);
Expand All @@ -53,8 +53,9 @@ impl<F: PrimeField> FCircuit<F> for MultiInputsFCircuit<F> {

/// generates the constraints for the step of F for the given z_i
fn generate_step_constraints(
self,
&self,
cs: ConstraintSystemRef<F>,
_i: usize,
z_i: Vec<FpVar<F>>,
) -> Result<Vec<FpVar<F>>, SynthesisError> {
let four = FpVar::<F>::new_constant(cs.clone(), F::from(4u32))?;
Expand All @@ -74,12 +75,12 @@ impl<F: PrimeField> FCircuit<F> for MultiInputsFCircuit<F> {
#[cfg(test)]
pub mod tests {
use super::*;
use ark_r1cs_std::alloc::AllocVar;
use ark_r1cs_std::{alloc::AllocVar, R1CSVar};
use ark_relations::r1cs::ConstraintSystem;

// test to check that the MultiInputsFCircuit computes the same values inside and outside the circuit
#[test]
fn test_add_f_circuit() {
fn test_f_circuit() {
let cs = ConstraintSystem::<Fr>::new_ref();

let circuit = MultiInputsFCircuit::<Fr>::new(());
Expand All @@ -91,11 +92,11 @@ pub mod tests {
Fr::from(1_u32),
];

let z_i1 = circuit.step_native(z_i.clone()).unwrap();
let z_i1 = circuit.step_native(0, z_i.clone()).unwrap();

let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
let computed_z_i1Var = circuit
.generate_step_constraints(cs.clone(), z_iVar.clone())
.generate_step_constraints(cs.clone(), 0, z_iVar.clone())
.unwrap();
assert_eq!(computed_z_i1Var.value().unwrap(), z_i1);
}
Expand Down
15 changes: 8 additions & 7 deletions folding-schemes/examples/sha256.rs
Original file line number Diff line number Diff line change
Expand Up @@ -41,13 +41,13 @@ impl<F: PrimeField> FCircuit<F> for Sha256FCircuit<F> {
fn new(_params: Self::Params) -> Self {
Self { _f: PhantomData }
}
fn state_len(self) -> usize {
fn state_len(&self) -> usize {
1
}

/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
/// z_{i+1}
fn step_native(self, z_i: Vec<F>) -> Result<Vec<F>, Error> {
fn step_native(&self, _i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
let out_bytes = Sha256::evaluate(&(), z_i[0].into_bigint().to_bytes_le()).unwrap();
let out: Vec<F> = out_bytes.to_field_elements().unwrap();

Expand All @@ -56,8 +56,9 @@ impl<F: PrimeField> FCircuit<F> for Sha256FCircuit<F> {

/// generates the constraints for the step of F for the given z_i
fn generate_step_constraints(
self,
&self,
_cs: ConstraintSystemRef<F>,
_i: usize,
z_i: Vec<FpVar<F>>,
) -> Result<Vec<FpVar<F>>, SynthesisError> {
let unit_var = UnitVar::default();
Expand All @@ -71,22 +72,22 @@ impl<F: PrimeField> FCircuit<F> for Sha256FCircuit<F> {
#[cfg(test)]
pub mod tests {
use super::*;
use ark_r1cs_std::alloc::AllocVar;
use ark_r1cs_std::{alloc::AllocVar, R1CSVar};
use ark_relations::r1cs::ConstraintSystem;

// test to check that the Sha256FCircuit computes the same values inside and outside the circuit
#[test]
fn test_sha256_f_circuit() {
fn test_f_circuit() {
let cs = ConstraintSystem::<Fr>::new_ref();

let circuit = Sha256FCircuit::<Fr>::new(());
let z_i = vec![Fr::from(1_u32)];

let z_i1 = circuit.step_native(z_i.clone()).unwrap();
let z_i1 = circuit.step_native(0, z_i.clone()).unwrap();

let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
let computed_z_i1Var = circuit
.generate_step_constraints(cs.clone(), z_iVar.clone())
.generate_step_constraints(cs.clone(), 0, z_iVar.clone())
.unwrap();
assert_eq!(computed_z_i1Var.value().unwrap(), z_i1);
}
Expand Down
2 changes: 1 addition & 1 deletion folding-schemes/src/folding/hypernova/lcccs.rs
Original file line number Diff line number Diff line change
Expand Up @@ -96,7 +96,7 @@ impl<C: CurveGroup> LCCCS<C> {
w: &Witness<C::ScalarField>,
) -> Result<(), Error> {
// check that C is the commitment of w. Notice that this is not verifying a Pedersen
// opening, but checking that the Commmitment comes from committing to the witness.
// opening, but checking that the Commitment comes from committing to the witness.
if self.C != Pedersen::<C>::commit(pedersen_params, &w.w, &w.r_w)? {
return Err(Error::NotSatisfied);
}
Expand Down
7 changes: 6 additions & 1 deletion folding-schemes/src/folding/nova/circuits.rs
Original file line number Diff line number Diff line change
Expand Up @@ -245,6 +245,7 @@ pub struct AugmentedFCircuit<
pub _gc2: PhantomData<GC2>,
pub poseidon_config: PoseidonConfig<CF1<C1>>,
pub i: Option<CF1<C1>>,
pub i_usize: Option<usize>,
pub z_0: Option<Vec<C1::ScalarField>>,
pub z_i: Option<Vec<C1::ScalarField>>,
pub u_i: Option<CommittedInstance<C1>>,
Expand Down Expand Up @@ -278,6 +279,7 @@ where
_gc2: PhantomData,
poseidon_config: poseidon_config.clone(),
i: None,
i_usize: None,
z_0: None,
z_i: None,
u_i: None,
Expand Down Expand Up @@ -349,7 +351,10 @@ where
)?;

// get z_{i+1} from the F circuit
let z_i1 = self.F.generate_step_constraints(cs.clone(), z_i.clone())?;
let i_usize = self.i_usize.unwrap_or(0);
let z_i1 = self
.F
.generate_step_constraints(cs.clone(), i_usize, z_i.clone())?;

let zero = FpVar::<CF1<C1>>::new_constant(cs.clone(), CF1::<C1>::zero())?;
let is_not_basecase = i.is_neq(&zero)?;
Expand Down
Loading

0 comments on commit a4905c8

Please sign in to comment.