This is the implementation code of the paper "Conditional Video Summarization via Non-monotone Submodular Function Maximization".
- System requirement: Pytorch 1.1.0, Python 3.7
- Download the datasets from the Google drive link and place all datasets under the "datasets" folder. It is about 1 GB and will take some time to finish.
- GoogleNet features
python QVSmain.py -d datasets/qvs_dataset_ovp_google_pool5.h5 -s datasets/ovpsplitsfull.json -m OVP --mode 2 - Histgram color features
python QVSmain.py -d datasets/qvs_dataset_ovp_color.h5 -s datasets/ovpsplitscolor.json -m OVP --mode 2 --ftype color
- GoogleNet features
python QVSmain.py -d datasets/qvs_dataset_youtube_google_pool5.h5 -s datasets/youtubesplitsfull.json -m Youtube --mode 2 - Histgram color features
python QVSmain.py -d datasets/qvs_dataset_youtube_color.h5 -s datasets/youtubesplitscolor.json -m Youtube --mode 2 --ftype color
Using Youtube v73 as an example
- Focus on the game field
python QVSmain.py -d datasets/qvs_dataset_youtube_google_pool5.h5 -s datasets/youtubesplitsv73.json -m Youtube --mode 2 --cond --query 2 - Focus on the stands
python QVSmain.py -d datasets/qvs_dataset_youtube_google_pool5.h5 -s datasets/youtubesplitsv73.json -m Youtube --mode 2 --cond --query 9