Skip to content

amyxwgu/CVS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

83 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This is the implementation code of the paper "Conditional Video Summarization via Non-monotone Submodular Function Maximization".

Get started:

  1. System requirement: Pytorch 1.1.0, Python 3.7
  2. Download the datasets from the Google drive link and place all datasets under the "datasets" folder. It is about 1 GB and will take some time to finish.

Generic Video Summarization:

Use OVP dataset

  1. GoogleNet features
    python QVSmain.py -d datasets/qvs_dataset_ovp_google_pool5.h5 -s datasets/ovpsplitsfull.json -m OVP --mode 2
  2. Histgram color features
    python QVSmain.py -d datasets/qvs_dataset_ovp_color.h5 -s datasets/ovpsplitscolor.json -m OVP --mode 2 --ftype color

Use Youtube dataset

  1. GoogleNet features
    python QVSmain.py -d datasets/qvs_dataset_youtube_google_pool5.h5 -s datasets/youtubesplitsfull.json -m Youtube --mode 2
  2. Histgram color features
    python QVSmain.py -d datasets/qvs_dataset_youtube_color.h5 -s datasets/youtubesplitscolor.json -m Youtube --mode 2 --ftype color

Conditional Video Summarization:

Using Youtube v73 as an example

  1. Focus on the game field
    python QVSmain.py -d datasets/qvs_dataset_youtube_google_pool5.h5 -s datasets/youtubesplitsv73.json -m Youtube --mode 2 --cond --query 2
  2. Focus on the stands
    python QVSmain.py -d datasets/qvs_dataset_youtube_google_pool5.h5 -s datasets/youtubesplitsv73.json -m Youtube --mode 2 --cond --query 9

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages