Tags: ananthsub/fairseq
Tags
v0.8.0 -> v0.9.0 (facebookresearch#1452) Summary: Possibly breaking changes: - Set global numpy seed (4a7cd58) - Split `in_proj_weight` into separate k, v, q projections in MultiheadAttention (fdf4c3e) - TransformerEncoder returns namedtuples instead of dict (27568a7) New features: - Add `--fast-stat-sync` option (e1ba32a) - Add `--empty-cache-freq` option (315c463) - Support criterions with parameters (ba5f829) New papers: - Simple and Effective Noisy Channel Modeling for Neural Machine Translation (49177c9) - Levenshtein Transformer (86857a5, ...) - Cross+Self-Attention for Transformer Models (4ac2c5f) - Jointly Learning to Align and Translate with Transformer Models (1c66792) - Reducing Transformer Depth on Demand with Structured Dropout (dabbef4) - Unsupervised Cross-lingual Representation Learning at Scale (XLM-RoBERTa) (e23e5ea) - BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension (a92bcda) - CamemBERT: a French BERT (b31849a) Speed improvements: - Add CUDA kernels for LightConv and DynamicConv (f840564) - Cythonization of various dataloading components (4fc3953, ...) - Don't project mask tokens for MLM training (718677e) Pull Request resolved: facebookresearch#1452 Differential Revision: D18798409 Pulled By: myleott fbshipit-source-id: 860a0d5aaf7377c8c9bd63cdb3b33d464f0e1727
v0.7.2 -> v0.8.0 (facebookresearch#1017) Summary: Changelog: - Relicensed under MIT license - Add RoBERTa - Add wav2vec - Add WMT'19 models - Add initial ASR code - Changed torch.hub interface (`generate` renamed to `translate`) - Add `--tokenizer` and `--bpe` - f812e52: Renamed data.transforms -> data.encoders - 654affc: New Dataset API (optional) - `47fd985`: Deprecate old Masked LM components - `5f78106`: Set mmap as default dataset format and infer format automatically - Misc fixes for sampling - Misc fixes to support PyTorch 1.2 Pull Request resolved: facebookresearch#1017 Differential Revision: D16799880 Pulled By: myleott fbshipit-source-id: 45ad8bc531724a53063cbc24ca1c93f715cdc5a7
v0.7.1 -> v0.7.2 (facebookresearch#891) Summary: No major API changes since the last release. Cutting a new release since we'll be merging significant (possibly breaking) changes to logging, data loading and the masked LM implementation soon. Pull Request resolved: facebookresearch#891 Differential Revision: D16377132 Pulled By: myleott fbshipit-source-id: f1cb88e671ccd510e53334d0f449fe18585268c7
v0.7.1: fix PyPI setup and tests Summary: Pull Request resolved: facebookresearch#818 Differential Revision: D15916265 Pulled By: myleott fbshipit-source-id: c66c0bd988d3472c4150226952f34ee8d4c3db86
v0.7.0 (facebookresearch#817) Summary: Notable (possibly breaking) changes: - d45db80: Remove checkpoint utility functions from utils.py into checkpoint_utils.py - f2563c2: Move LM definitions into separate files - dffb167: Updates to model API: - `FairseqModel` -> `FairseqEncoderDecoderModel` - add `FairseqDecoder.extract_features` and `FairseqDecoder.output_layer` - `encoder_out_dict` -> `encoder_out` - rm unused `remove_head` functions - 34726d5: Move `distributed_init` into `DistributedFairseqModel` - cf17068: Simplify distributed launch by automatically launching multiprocessing on each node for all visible GPUs (allows launching just one job per node instead of one per GPU) - d45db80: Change default LR scheduler from `reduce_lr_on_plateau` to `fixed` - 96ac28d: Rename `--sampling-temperature` -> `--temperature` - fc1a19a: Deprecate dummy batches - a1c997b: Add memory mapped datasets - 0add50c: Allow cycling over multiple datasets, where each one becomes an "epoch" Plus many additional features and bugfixes Pull Request resolved: facebookresearch#817 Differential Revision: D15913844 Pulled By: myleott fbshipit-source-id: d5b5d678efdd9dd3e4d7ca848ddcf1ec2b21bf6b
0.6.1 -> 0.6.2 (facebookresearch#577) Summary: Changelog: - 998ba4f: Add language models from Baevski & Auli (2018) - 4294c4f: Add mixture of experts code from Shen et al. (2019) - 0049349: Add example for multilingual training - 48d9afb: Speed improvements, including fused operators from apex - 44d27e6: Add Tensorboard support - d17fa85: Add Adadelta optimizer - 9e1c880: Add `FairseqEncoderModel` - b65c579: Add `FairseqTask.inference_step` to modularize generate.py - 2ad1178: Add back `--curriculum` - Misc bug fixes and other features Pull Request resolved: facebookresearch#577 Differential Revision: D14481233 Pulled By: myleott fbshipit-source-id: 4ff8625ef1c0b24273fc65df7c5658e3c932e8b7
Add fairseq to PyPI (facebookresearch#495) Summary: - fairseq can now be installed via pip: `pip install fairseq` - command-line tools are globally accessible: `fairseq-preprocess`, `fairseq-train`, `fairseq-generate`, etc. Pull Request resolved: facebookresearch#495 Differential Revision: D14017761 Pulled By: myleott fbshipit-source-id: 10c9f6634a3056074eac2f33324b4f1f404d4235
Online backtranslation module Co-authored-by: liezl200 <[email protected]>
0.4.0 -> 0.5.0 Changelog: - 97b58b4: add Transformer model from Vaswani et al. (2017) - b2374e5: faster Transformer inference with improved caching - 2d27ae0: simulate large mini-batch training with delayed updates (`--update-freq`) - 7ee1d28: add FP16 training support (`--fp16`) - 2a84f46: faster inference by removing completed sentences from the batch - 663fd80: batched interactive generation - 4c2ef2d: add language modeling / gated convolutional model from Dauphin et al. (2017) - b59815b: add Hierarchical Neural Story Generation model from Fan et al. (2018) - ff68a9e: add FairseqTask to modularize task definitions (e.g., translation, language modeling)
PreviousNext