Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Implement RNN for Torch backend (keras-team#340)
* Add PyTorch numpy functionality * Add dtype conversion * Partial fix for PyTorch numpy tests * small logic fix * Revert numpy_test * Add tensor conversion to numpy * Fix some arithmetic tests * Fix some torch functions for numpy compatibility * Fix pytorch ops for numpy compatibility, add TODOs * Fix formatting * Implement nits and fix dtype standardization * Add pytest skipif decorator and fix nits * Fix formatting and rename dtypes map * Split tests by backend * Merge space * Fix dtype issues from new type checking * Implement torch.full and torch.full_like numpy compatible * Implements logspace and linspace with tensor support for start and stop * Replace len of shape with ndim * Fix formatting * Implement torch.trace * Implement eye k diagonal arg * Implement torch.tri * Fix formatting issues * Fix torch.take dimensionality * Add split functionality * Revert torch.eye implementation to prevent conflict * Implement all padding modes * Adds torch image resizing and torchvision dependency. * Fix conditional syntax * Make torchvision import optional * Partial implementation of torch RNN * Duplicate torch demo file * Small ops fixes for torch unit tests * delete nonfunctional gpu test file * Revert rnn and formatting fixes * Revert progbar * Fix formatting * Restore torch rnn * Rough implementation of Torch RNN * Rewrite tf.while_loop in Torch * Implement tensor list comprehension functionality * Revert tf changes * Debug RNN tests * Debug convolutional LSTM tests * Fix tensor list conversion * Fix zero output for masking * Fix formatting * Update comment
- Loading branch information