Skip to content

Commit

Permalink
Add pad_sequences util.
Browse files Browse the repository at this point in the history
  • Loading branch information
fchollet committed May 14, 2023
1 parent e15cc82 commit e1e9ec5
Show file tree
Hide file tree
Showing 3 changed files with 249 additions and 0 deletions.
8 changes: 8 additions & 0 deletions keras_core/testing/test_case.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,14 @@ def assertNotAllClose(self, x1, x2, atol=1e-6, rtol=1e-6, msg=None):
def assertAlmostEqual(self, x1, x2, decimal=3, msg=None):
np.testing.assert_almost_equal(x1, x2, decimal=decimal)

def assertAllEqual(self, x1, x2, msg=None):
self.assertEqual(len(x1), len(x2), msg=msg)
for e1, e2 in zip(x1, x2):
if isinstance(e1, (list, tuple)) or isinstance(e2, (list, tuple)):
self.assertAllEqual(e1, e2, msg=msg)
else:
self.assertEqual(e1, e2, msg=msg)

def assertLen(self, iterable, expected_len, msg=None):
self.assertEqual(len(iterable), expected_len, msg=msg)

Expand Down
139 changes: 139 additions & 0 deletions keras_core/utils/sequence_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,139 @@
import numpy as np

from keras_core.api_export import keras_core_export


@keras_core_export(
[
"keras_core.utils.pad_sequences",
"keras_core.preprocessing.sequence.pad_sequences",
]
)
def pad_sequences(
sequences,
maxlen=None,
dtype="int32",
padding="pre",
truncating="pre",
value=0.0,
):
"""Pads sequences to the same length.
This function transforms a list (of length `num_samples`)
of sequences (lists of integers)
into a 2D NumPy array of shape `(num_samples, num_timesteps)`.
`num_timesteps` is either the `maxlen` argument if provided,
or the length of the longest sequence in the list.
Sequences that are shorter than `num_timesteps`
are padded with `value` until they are `num_timesteps` long.
Sequences longer than `num_timesteps` are truncated
so that they fit the desired length.
The position where padding or truncation happens is determined by
the arguments `padding` and `truncating`, respectively.
Pre-padding or removing values from the beginning of the sequence is the
default.
>>> sequence = [[1], [2, 3], [4, 5, 6]]
>>> keras_core.utils.pad_sequences(sequence)
array([[0, 0, 1],
[0, 2, 3],
[4, 5, 6]], dtype=int32)
>>> keras_core.utils.pad_sequences(sequence, value=-1)
array([[-1, -1, 1],
[-1, 2, 3],
[ 4, 5, 6]], dtype=int32)
>>> keras_core.utils.pad_sequences(sequence, padding='post')
array([[1, 0, 0],
[2, 3, 0],
[4, 5, 6]], dtype=int32)
>>> keras_core.utils.pad_sequences(sequence, maxlen=2)
array([[0, 1],
[2, 3],
[5, 6]], dtype=int32)
Args:
sequences: List of sequences (each sequence is a list of integers).
maxlen: Optional Int, maximum length of all sequences. If not provided,
sequences will be padded to the length of the longest individual
sequence.
dtype: (Optional, defaults to `"int32"`). Type of the output sequences.
To pad sequences with variable length strings, you can use `object`.
padding: String, "pre" or "post" (optional, defaults to `"pre"`):
pad either before or after each sequence.
truncating: String, "pre" or "post" (optional, defaults to `"pre"`):
remove values from sequences larger than
`maxlen`, either at the beginning or at the end of the sequences.
value: Float or String, padding value. (Optional, defaults to 0.)
Returns:
NumPy array with shape `(len(sequences), maxlen)`
"""
if not hasattr(sequences, "__len__"):
raise ValueError("`sequences` must be iterable.")
num_samples = len(sequences)

lengths = []
sample_shape = ()
flag = True

# take the sample shape from the first non empty sequence
# checking for consistency in the main loop below.

for x in sequences:
try:
lengths.append(len(x))
if flag and len(x):
sample_shape = np.asarray(x).shape[1:]
flag = False
except TypeError as e:
raise ValueError(
"`sequences` must be a list of iterables. "
f"Found non-iterable: {str(x)}"
) from e

if maxlen is None:
maxlen = np.max(lengths)

is_dtype_str = np.issubdtype(dtype, np.str_) or np.issubdtype(
dtype, np.unicode_
)
if isinstance(value, str) and dtype != object and not is_dtype_str:
raise ValueError(
f"`dtype` {dtype} is not compatible with `value`'s type: "
f"{type(value)}\nYou should set `dtype=object` for variable length "
"strings."
)

x = np.full((num_samples, maxlen) + sample_shape, value, dtype=dtype)
for idx, s in enumerate(sequences):
if not len(s):
continue # empty list/array was found
if truncating == "pre":
trunc = s[-maxlen:]
elif truncating == "post":
trunc = s[:maxlen]
else:
raise ValueError(f'Truncating type "{truncating}" not understood')

# check `trunc` has expected shape
trunc = np.asarray(trunc, dtype=dtype)
if trunc.shape[1:] != sample_shape:
raise ValueError(
f"Shape of sample {trunc.shape[1:]} of sequence at "
f"position {idx} is different from expected shape "
f"{sample_shape}"
)

if padding == "post":
x[idx, : len(trunc)] = trunc
elif padding == "pre":
x[idx, -len(trunc) :] = trunc
else:
raise ValueError(f'Padding type "{padding}" not understood')
return x
102 changes: 102 additions & 0 deletions keras_core/utils/sequence_utils_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,102 @@
from keras_core import testing
from keras_core.utils import sequence_utils


class PadSequencesTest(testing.TestCase):
def test_pad_sequences(self):
a = [[1], [1, 2], [1, 2, 3]]

# test padding
b = sequence_utils.pad_sequences(a, maxlen=3, padding="pre")
self.assertAllClose(b, [[0, 0, 1], [0, 1, 2], [1, 2, 3]])
b = sequence_utils.pad_sequences(a, maxlen=3, padding="post")
self.assertAllClose(b, [[1, 0, 0], [1, 2, 0], [1, 2, 3]])

# test truncating
b = sequence_utils.pad_sequences(a, maxlen=2, truncating="pre")
self.assertAllClose(b, [[0, 1], [1, 2], [2, 3]])
b = sequence_utils.pad_sequences(a, maxlen=2, truncating="post")
self.assertAllClose(b, [[0, 1], [1, 2], [1, 2]])

# test value
b = sequence_utils.pad_sequences(a, maxlen=3, value=1)
self.assertAllClose(b, [[1, 1, 1], [1, 1, 2], [1, 2, 3]])

def test_pad_sequences_str(self):
a = [["1"], ["1", "2"], ["1", "2", "3"]]

# test padding
b = sequence_utils.pad_sequences(
a, maxlen=3, padding="pre", value="pad", dtype=object
)
self.assertAllEqual(
b, [["pad", "pad", "1"], ["pad", "1", "2"], ["1", "2", "3"]]
)
b = sequence_utils.pad_sequences(
a, maxlen=3, padding="post", value="pad", dtype="<U3"
)
self.assertAllEqual(
b, [["1", "pad", "pad"], ["1", "2", "pad"], ["1", "2", "3"]]
)

# test truncating
b = sequence_utils.pad_sequences(
a, maxlen=2, truncating="pre", value="pad", dtype=object
)
self.assertAllEqual(b, [["pad", "1"], ["1", "2"], ["2", "3"]])
b = sequence_utils.pad_sequences(
a, maxlen=2, truncating="post", value="pad", dtype="<U3"
)
self.assertAllEqual(b, [["pad", "1"], ["1", "2"], ["1", "2"]])

with self.assertRaisesRegex(
ValueError, "`dtype` int32 is not compatible with "
):
sequence_utils.pad_sequences(
a, maxlen=2, truncating="post", value="pad"
)

def test_pad_sequences_vector(self):
a = [[[1, 1]], [[2, 1], [2, 2]], [[3, 1], [3, 2], [3, 3]]]

# test padding
b = sequence_utils.pad_sequences(a, maxlen=3, padding="pre")
self.assertAllClose(
b,
[
[[0, 0], [0, 0], [1, 1]],
[[0, 0], [2, 1], [2, 2]],
[[3, 1], [3, 2], [3, 3]],
],
)
b = sequence_utils.pad_sequences(a, maxlen=3, padding="post")
self.assertAllClose(
b,
[
[[1, 1], [0, 0], [0, 0]],
[[2, 1], [2, 2], [0, 0]],
[[3, 1], [3, 2], [3, 3]],
],
)

# test truncating
b = sequence_utils.pad_sequences(a, maxlen=2, truncating="pre")
self.assertAllClose(
b, [[[0, 0], [1, 1]], [[2, 1], [2, 2]], [[3, 2], [3, 3]]]
)

b = sequence_utils.pad_sequences(a, maxlen=2, truncating="post")
self.assertAllClose(
b, [[[0, 0], [1, 1]], [[2, 1], [2, 2]], [[3, 1], [3, 2]]]
)

# test value
b = sequence_utils.pad_sequences(a, maxlen=3, value=1)
self.assertAllClose(
b,
[
[[1, 1], [1, 1], [1, 1]],
[[1, 1], [2, 1], [2, 2]],
[[3, 1], [3, 2], [3, 3]],
],
)

0 comments on commit e1e9ec5

Please sign in to comment.