Dynamic Graph | TGN |
---|---|
Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time).
In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient.
We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.
Dependencies (with python >= 3.7):
pandas==1.1.0
torch==1.6.0
scikit_learn==0.23.1
Download the sample datasets (eg. wikipedia and reddit) from
here and store their csv files in a folder named
data/
.
We use the dense npy
format to save the features in binary format. If edge features or nodes
features are absent, they will be replaced by a vector of zeros.
python tgn/utils/preprocess_data.py --data wikipedia --bipartite
python tgn/utils/preprocess_data.py --data reddit --bipartite
Self-supervised learning using the link prediction task:
# TGN-attn: Supervised learning on the wikipedia dataset
python tgn/train_self_supervised.py --use_memory --prefix tgn-attn --n_runs 10
# TGN-attn-reddit: Supervised learning on the reddit dataset
python tgn/train_self_supervised.py -d reddit --use_memory --prefix tgn-attn-reddit --n_runs 10
Supervised learning on dynamic node classification (this requires a trained model from the self-supervised task, by eg. running the commands above):
# TGN-attn: self-supervised learning on the wikipedia dataset
python tgn/train_supervised.py --use_memory --prefix tgn-attn --n_runs 10
# TGN-attn-reddit: self-supervised learning on the reddit dataset
python tgn/train_supervised.py -d reddit --use_memory --prefix tgn-attn-reddit --n_runs 10
### Wikipedia Self-supervised
# Jodie
python tgn/train_self_supervised.py --use_memory --memory_updater rnn --embedding_module time --prefix jodie_rnn --n_runs 10
# DyRep
python tgn/train_self_supervised.py --use_memory --memory_updater rnn --dyrep --use_destination_embedding_in_message --prefix dyrep_rnn --n_runs 10
### Reddit Self-supervised
# Jodie
python tgn/train_self_supervised.py -d reddit --use_memory --memory_updater rnn --embedding_module time --prefix jodie_rnn_reddit --n_runs 10
# DyRep
python tgn/train_self_supervised.py -d reddit --use_memory --memory_updater rnn --dyrep --use_destination_embedding_in_message --prefix dyrep_rnn_reddit --n_runs 10
### Wikipedia Supervised
# Jodie
python tgn/train_supervised.py --use_memory --memory_updater rnn --embedding_module time --prefix jodie_rnn --n_runs 10
# DyRep
python tgn/train_supervised.py --use_memory --memory_updater rnn --dyrep --use_destination_embedding_in_message --prefix dyrep_rnn --n_runs 10
### Reddit Supervised
# Jodie
python tgn/train_supervised.py -d reddit --use_memory --memory_updater rnn --embedding_module time --prefix jodie_rnn_reddit --n_runs 10
# DyRep
python tgn/train_supervised.py -d reddit --use_memory --memory_updater rnn --dyrep --use_destination_embedding_in_message --prefix dyrep_rnn_reddit --n_runs 10
Commands to replicate all results in the ablation study over different modules:
# TGN-2l
python tgn/train_self_supervised.py --use_memory --n_layer 2 --prefix tgn-2l --n_runs 10
# TGN-no-mem
python tgn/train_self_supervised.py --prefix tgn-no-mem --n_runs 10
# TGN-time
python tgn/train_self_supervised.py --use_memory --embedding_module time --prefix tgn-time --n_runs 10
# TGN-id
python tgn/train_self_supervised.py --use_memory --embedding_module identity --prefix tgn-id --n_runs 10
# TGN-sum
python tgn/train_self_supervised.py --use_memory --embedding_module graph_sum --prefix tgn-sum --n_runs 10
# TGN-mean
python tgn/train_self_supervised.py --use_memory --aggregator mean --prefix tgn-mean --n_runs 10
optional arguments:
-d DATA, --data DATA Data sources to use (wikipedia or reddit)
--bs BS Batch size
--prefix PREFIX Prefix to name checkpoints and results
--n_degree N_DEGREE Number of neighbors to sample at each layer
--n_head N_HEAD Number of heads used in the attention layer
--n_epoch N_EPOCH Number of epochs
--n_layer N_LAYER Number of graph attention layers
--lr LR Learning rate
--patience Patience of the early stopping strategy
--n_runs Number of runs (compute mean and std of results)
--drop_out DROP_OUT Dropout probability
--gpu GPU Idx for the gpu to use
--node_dim NODE_DIM Dimensions of the node embedding
--time_dim TIME_DIM Dimensions of the time embedding
--use_memory Whether to use a memory for the nodes
--embedding_module Type of the embedding module
--message_function Type of the message function
--memory_updater Type of the memory updater
--aggregator Type of the message aggregator
--memory_update_at_the_end Whether to update the memory at the end or at the start of the batch
--message_dim Dimension of the messages
--memory_dim Dimension of the memory
--backprop_every Number of batches to process before performing backpropagation
--different_new_nodes Whether to use different unseen nodes for validation and testing
--uniform Whether to sample the temporal neighbors uniformly (or instead take the most recent ones)
--randomize_features Whether to randomize node features
--dyrep Whether to run the model as DyRep
- Make code memory efficient: for the sake of simplicity, the memory module of the TGN model is implemented as a parameter (so that it is stored and loaded together of the model). However, this does not need to be the case, and more efficient implementations which treat the models as just tensors (in the same way as the input features) would be more amenable to large graphs.
@inproceedings{tgn_icml_grl2020,
title={Temporal Graph Networks for Deep Learning on Dynamic Graphs},
author={Emanuele Rossi and Ben Chamberlain and Fabrizio Frasca and Davide Eynard and Federico
Monti and Michael Bronstein},
booktitle={ICML 2020 Workshop on Graph Representation Learning},
year={2020}
}