Skip to content

Commit

Permalink
Get started docs (huggingface#15098)
Browse files Browse the repository at this point in the history
* clean commit of changes

* apply review feedback, make edits

* fix backticks, minor formatting

* 🖍 make fixup and minor edits

* 🖍 fix # in header

* 📝 update code sample without from_pt

* 📝 final review
  • Loading branch information
stevhliu authored Jan 29, 2022
1 parent cabd6d2 commit 16d4acb
Show file tree
Hide file tree
Showing 3 changed files with 274 additions and 398 deletions.
52 changes: 8 additions & 44 deletions docs/source/index.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -12,61 +12,25 @@ specific language governing permissions and limitations under the License.

# 🤗 Transformers

State-of-the-art Machine Learning for Jax, Pytorch and TensorFlow
State-of-the-art Machine Learning for PyTorch, TensorFlow and JAX.

🤗 Transformers (formerly known as _pytorch-transformers_ and _pytorch-pretrained-bert_) provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.
🤗 Transformers provides APIs to easily download and train state-of-the-art pretrained models. Using pretrained models can reduce your compute costs, carbon footprint, and save you time from training a model from scratch. The models can be used across different modalities such as:

These models can applied on:
* 📝 Text: text classification, information extraction, question answering, summarization, translation, and text generation in over 100 languages.
* 🖼️ Images: image classification, object detection, and segmentation.
* 🗣️ Audio: speech recognition and audio classification.
* 🐙 Multimodal: table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering.

* 📝 Text, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages.
* 🖼️ Images, for tasks like image classification, object detection, and segmentation.
* 🗣️ Audio, for tasks like speech recognition and audio classification.
Our library supports seamless integration between three of the most popular deep learning libraries: [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/) and [JAX](https://jax.readthedocs.io/en/latest/). Train your model in three lines of code in one framework, and load it for inference with another.

Transformer models can also perform tasks on **several modalities combined**, such as table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering.

🤗 Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our [model hub](https://huggingface.co/models). At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments.

🤗 Transformers is backed by the three most popular deep learning libraries [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) and [TensorFlow](https://www.tensorflow.org/) with a seamless integration between them. It's straightforward to train your models with one before loading them for inference with the other.

This is the documentation of our repository [transformers](https://github.com/huggingface/transformers). You can
also follow our [online course](https://huggingface.co/course) that teaches how to use this library, as well as the
other libraries developed by Hugging Face and the Hub.
Each 🤗 Transformers architecture is defined in a standalone Python module so they can be easily customized for research and experiments.

## If you are looking for custom support from the Hugging Face team

<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://huggingface.co/front/thumbnails/support.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>

## Features

1. Easy-to-use state-of-the-art models:
- High performance on natural language understanding & generation, computer vision, and audio tasks.
- Low barrier to entry for educators and practitioners.
- Few user-facing abstractions with just three classes to learn.
- A unified API for using all our pretrained models.

1. Lower compute costs, smaller carbon footprint:
- Researchers can share trained models instead of always retraining.
- Practitioners can reduce compute time and production costs.
- Dozens of architectures with over 20,000 pretrained models, some in more than 100 languages.

1. Choose the right framework for every part of a model's lifetime:
- Train state-of-the-art models in 3 lines of code.
- Move a single model between TF2.0/PyTorch/JAX frameworks at will.
- Seamlessly pick the right framework for training, evaluation and production.

1. Easily customize a model or an example to your needs:
- We provide examples for each architecture to reproduce the results published by its original authors.
- Model internals are exposed as consistently as possible.
- Model files can be used independently of the library for quick experiments.

[All the model checkpoints](https://huggingface.co/models) are seamlessly integrated from the huggingface.co [model
hub](https://huggingface.co) where they are uploaded directly by [users](https://huggingface.co/users) and
[organizations](https://huggingface.co/organizations).

Current number of checkpoints: <img src="https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen">

## Contents

The documentation is organized in five parts:
Expand Down
Loading

0 comments on commit 16d4acb

Please sign in to comment.