forked from tensorflow/probability
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add
tfp.math.pinv
which calculates the Moore-Penrose pseudo-inverse.
PiperOrigin-RevId: 193056877
- Loading branch information
Joshua V. Dillon
authored and
Copybara-Service
committed
Apr 16, 2018
1 parent
e8091c2
commit 748af84
Showing
4 changed files
with
310 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,164 @@ | ||
# Copyright 2018 The TensorFlow Probability Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================ | ||
"""Functions for common linear algebra operations. | ||
Note: Many of these functions will eventually be migrated to core Tensorflow. | ||
""" | ||
|
||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
# Dependency imports | ||
import numpy as np | ||
|
||
import tensorflow as tf | ||
|
||
|
||
__all__ = [ | ||
'pinv', | ||
] | ||
|
||
|
||
def pinv(a, rcond=None, validate_args=False, name=None): | ||
"""Compute the Moore-Penrose pseudo-inverse of a matrix. | ||
Calculate the [generalized inverse of a matrix]( | ||
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse) using its | ||
singular-value decomposition (SVD) and including all large singular values. | ||
The pseudo-inverse of a matrix `A`, is defined as: "the matrix that 'solves' | ||
[the least-squares problem] `A @ x = b`," i.e., if `x_hat` is a solution, then | ||
`A_pinv` is the matrix such that `x_hat = A_pinv @ b`. It can be shown that if | ||
`U @ Sigma @ V.T = A` is the singular value decomposition of `A`, then | ||
`A_pinv = V @ inv(Sigma) U^T`. [(Strang, 1980)][1] | ||
This function is analogous to [`numpy.linalg.pinv`]( | ||
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.pinv.html). | ||
It differs only in default value of `rcond`. In `numpy.linalg.pinv`, the | ||
default `rcond` is `1e-15`. Here the default is | ||
`10. * max(num_rows, num_cols) * np.finfo(dtype).eps`. | ||
Args: | ||
a: (Batch of) `float`-like matrix-shaped `Tensor`(s) which are to be | ||
pseudo-inverted. | ||
rcond: `Tensor` of small singular value cutoffs. Singular values smaller | ||
(in modulus) than `rcond` * largest_singular_value (again, in modulus) are | ||
set to zero. Must broadcast against `tf.shape(a)[:-2]`. | ||
Default value: `10. * max(num_rows, num_cols) * np.finfo(a.dtype).eps`. | ||
validate_args: When `True`, additional assertions might be embedded in the | ||
graph. | ||
Default value: `False` (i.e., no graph assertions are added). | ||
name: Python `str` prefixed to ops created by this function. | ||
Default value: "pinv". | ||
Returns: | ||
a_pinv: The pseudo-inverse of input `a`. Has same shape as `a` except | ||
rightmost two dimensions are transposed. | ||
Raises: | ||
TypeError: if input `a` does not have `float`-like `dtype`. | ||
ValueError: if input `a` has fewer than 2 dimensions. | ||
#### Examples | ||
```python | ||
import tensorflow as tf | ||
import tensorflow_probability as tfp | ||
a = tf.constant([[1., 0.4, 0.5], | ||
[0.4, 0.2, 0.25], | ||
[0.5, 0.25, 0.35]]) | ||
tf.matmul(tfp.math.pinv(a), a) | ||
# ==> array([[1., 0., 0.], | ||
[0., 1., 0.], | ||
[0., 0., 1.]], dtype=float32) | ||
a = tf.constant([[1., 0.4, 0.5, 1.], | ||
[0.4, 0.2, 0.25, 2.], | ||
[0.5, 0.25, 0.35, 3.]]) | ||
tf.matmul(tfp.math.pinv(a), a) | ||
# ==> array([[ 0.76, 0.37, 0.21, -0.02], | ||
[ 0.37, 0.43, -0.33, 0.02], | ||
[ 0.21, -0.33, 0.81, 0.01], | ||
[-0.02, 0.02, 0.01, 1. ]], dtype=float32) | ||
``` | ||
#### References | ||
[1]: G. Strang. "Linear Algebra and Its Applications, 2nd Ed." Academic Press, | ||
Inc., 1980, pp. 139-142. | ||
""" | ||
with tf.name_scope(name, 'pinv', [a, rcond]): | ||
a = tf.convert_to_tensor(a, name='a') | ||
|
||
if not a.dtype.is_floating: | ||
raise TypeError('Input `a` must have `float`-like `dtype` ' | ||
'(saw {}).'.format(a.dtype.name)) | ||
if a.shape.ndims is not None and a.shape.ndims < 2: | ||
raise ValueError('Input `a` must have at least 2 dimensions ' | ||
'(saw: {}).'.format(a.shape.ndims)) | ||
elif validate_args: | ||
assert_rank_at_least_2 = tf.assert_rank_at_least( | ||
a, rank=2, | ||
message='Input `a` must have at least 2 dimensions.') | ||
with tf.control_dependencies([assert_rank_at_least_2]): | ||
a = tf.identity(a) | ||
|
||
dtype = a.dtype.as_numpy_dtype | ||
|
||
if rcond is None: | ||
def get_dim_size(dim): | ||
if a.shape.ndims is not None and a.shape[dim].value is not None: | ||
return a.shape[dim].value | ||
return tf.shape(a)[dim] | ||
num_rows = get_dim_size(-2) | ||
num_cols = get_dim_size(-1) | ||
if isinstance(num_rows, int) and isinstance(num_cols, int): | ||
max_rows_cols = float(max(num_rows, num_cols)) | ||
else: | ||
max_rows_cols = tf.cast(tf.maximum(num_rows, num_cols), dtype) | ||
rcond = 10. * max_rows_cols * np.finfo(dtype).eps | ||
|
||
rcond = tf.convert_to_tensor(rcond, dtype=dtype, name='rcond') | ||
|
||
# Calculate pseudo inverse via SVD. | ||
# Note: if a is symmetric then u == v. (We might observe additional | ||
# performance by explicitly setting `v = u` in such cases.) | ||
[ | ||
singular_values, # Sigma | ||
left_singular_vectors, # U | ||
right_singular_vectors, # V | ||
] = tf.linalg.svd(a, full_matrices=False, compute_uv=True) | ||
|
||
# Saturate small singular values to inf. This has the effect of make | ||
# `1. / s = 0.` while not resulting in `NaN` gradients. | ||
max_singular_value = tf.reduce_max(singular_values, axis=-1, keepdims=True) | ||
cutoff = rcond[..., tf.newaxis] * max_singular_value | ||
inf = tf.fill(tf.shape(singular_values), np.array(np.inf, dtype)) | ||
singular_values = tf.where(singular_values > cutoff, singular_values, inf) | ||
|
||
# Although `a == tf.matmul(u, s * v, transpose_b=True)` we swap | ||
# `u` and `v` here so that `tf.matmul(pinv(A), A) = tf.eye()`, i.e., | ||
# a matrix inverse has "transposed" semantics. | ||
a_pinv = tf.matmul( | ||
right_singular_vectors / singular_values[..., tf.newaxis, :], | ||
left_singular_vectors, | ||
adjoint_b=True) | ||
|
||
if a.shape.ndims is not None: | ||
a_pinv.set_shape(a.shape[:-2].concatenate([a.shape[-1], a.shape[-2]])) | ||
|
||
return a_pinv |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
# Copyright 2018 The TensorFlow Probability Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================ | ||
"""Tests for linear algebra.""" | ||
|
||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
# Dependency imports | ||
import numpy as np | ||
|
||
import tensorflow as tf | ||
|
||
from tensorflow_probability.python.math import pinv as pinv | ||
from tensorflow.python.framework import test_util | ||
|
||
|
||
class _PinvTest(object): | ||
|
||
def expected_pinv(self, a, rcond): | ||
"""Calls `np.linalg.pinv` but corrects its broken batch semantics.""" | ||
if a.ndim < 3: | ||
return np.linalg.pinv(a, rcond) | ||
if rcond is None: | ||
rcond = 10. * max(a.shape[-2], a.shape[-1]) * np.finfo(a.dtype).eps | ||
s = np.concatenate([a.shape[:-2], [a.shape[-1], a.shape[-2]]]) | ||
a_pinv = np.zeros(s, dtype=a.dtype) | ||
for i in np.ndindex(a.shape[:(a.ndim - 2)]): | ||
a_pinv[i] = np.linalg.pinv( | ||
a[i], | ||
rcond=rcond if isinstance(rcond, float) else rcond[i]) | ||
return a_pinv | ||
|
||
@test_util.run_in_graph_and_eager_modes() | ||
def test_symmetric(self): | ||
a_ = self.dtype([[1., .4, .5], | ||
[.4, .2, .25], | ||
[.5, .25, .35]]) | ||
a_ = np.stack([a_ + 1., a_], axis=0) # Batch of matrices. | ||
a = tf.placeholder_with_default( | ||
input=a_, | ||
shape=a_.shape if self.use_static_shape else None) | ||
if self.use_default_rcond: | ||
rcond = None | ||
else: | ||
rcond = self.dtype([0., 0.01]) # Smallest 1 component is forced to zero. | ||
expected_a_pinv_ = self.expected_pinv(a_, rcond) | ||
a_pinv = pinv(a, rcond, validate_args=True) | ||
a_pinv_ = self.evaluate(a_pinv) | ||
self.assertAllClose(expected_a_pinv_, a_pinv_, | ||
atol=1e-5, rtol=1e-5) | ||
if not self.use_static_shape: | ||
return | ||
self.assertAllEqual(expected_a_pinv_.shape, a_pinv.shape) | ||
|
||
@test_util.run_in_graph_and_eager_modes() | ||
def test_nonsquare(self): | ||
a_ = self.dtype([[1., .4, .5, 1.], | ||
[.4, .2, .25, 2.], | ||
[.5, .25, .35, 3.]]) | ||
a_ = np.stack([a_ + 0.5, a_], axis=0) # Batch of matrices. | ||
a = tf.placeholder_with_default( | ||
input=a_, | ||
shape=a_.shape if self.use_static_shape else None) | ||
if self.use_default_rcond: | ||
rcond = None | ||
else: | ||
# Smallest 2 components are forced to zero. | ||
rcond = self.dtype([0., 0.25]) | ||
expected_a_pinv_ = self.expected_pinv(a_, rcond) | ||
a_pinv = pinv(a, rcond, validate_args=True) | ||
a_pinv_ = self.evaluate(a_pinv) | ||
self.assertAllClose(expected_a_pinv_, a_pinv_, | ||
atol=1e-5, rtol=1e-4) | ||
if not self.use_static_shape: | ||
return | ||
self.assertAllEqual(expected_a_pinv_.shape, a_pinv.shape) | ||
|
||
|
||
class PinvTestDynamic32DefaultRcond(tf.test.TestCase, _PinvTest): | ||
dtype = np.float32 | ||
use_static_shape = False | ||
use_default_rcond = True | ||
|
||
|
||
class PinvTestStatic64DefaultRcond(tf.test.TestCase, _PinvTest): | ||
dtype = np.float64 | ||
use_static_shape = True | ||
use_default_rcond = True | ||
|
||
|
||
class PinvTestDynamic32CustomtRcond(tf.test.TestCase, _PinvTest): | ||
dtype = np.float32 | ||
use_static_shape = False | ||
use_default_rcond = False | ||
|
||
|
||
class PinvTestStatic64CustomRcond(tf.test.TestCase, _PinvTest): | ||
dtype = np.float64 | ||
use_static_shape = True | ||
use_default_rcond = False | ||
|
||
|
||
if __name__ == '__main__': | ||
tf.test.main() |