forked from meituan/YOLOv6
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
174 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,151 @@ | ||
import torch | ||
import torch.nn as nn | ||
import random | ||
|
||
class ORT_NMS(torch.autograd.Function): | ||
|
||
@staticmethod | ||
def forward(ctx, | ||
boxes, | ||
scores, | ||
max_output_boxes_per_class=torch.tensor([100]), | ||
iou_threshold=torch.tensor([0.45]), | ||
score_threshold=torch.tensor([0.25])): | ||
device = boxes.device | ||
batch = scores.shape[0] | ||
num_det = random.randint(0, 100) | ||
batches = torch.randint(0, batch, (num_det,)).sort()[0].to(device) | ||
idxs = torch.arange(100, 100 + num_det).to(device) | ||
zeros = torch.zeros((num_det,), dtype=torch.int64).to(device) | ||
selected_indices = torch.cat([batches[None], zeros[None], idxs[None]], 0).T.contiguous() | ||
selected_indices = selected_indices.to(torch.int64) | ||
return selected_indices | ||
|
||
@staticmethod | ||
def symbolic(g, boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold): | ||
return g.op("NonMaxSuppression", boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold) | ||
|
||
class TRT_NMS(torch.autograd.Function): | ||
@staticmethod | ||
def forward( | ||
ctx, | ||
boxes, | ||
scores, | ||
background_class=-1, | ||
box_coding=0, | ||
iou_threshold=0.45, | ||
max_output_boxes=100, | ||
plugin_version="1", | ||
score_activation=0, | ||
score_threshold=0.25, | ||
): | ||
batch_size, num_boxes, num_classes = scores.shape | ||
num_det = torch.randint(0, max_output_boxes, (batch_size, 1), dtype=torch.int32) | ||
det_boxes = torch.randn(batch_size, max_output_boxes, 4) | ||
det_scores = torch.randn(batch_size, max_output_boxes) | ||
det_classes = torch.randint(0, num_classes, (batch_size, max_output_boxes), dtype=torch.int32) | ||
|
||
return num_det, det_boxes, det_scores, det_classes | ||
|
||
@staticmethod | ||
def symbolic(g, | ||
boxes, | ||
scores, | ||
background_class=-1, | ||
box_coding=0, | ||
iou_threshold=0.45, | ||
max_output_boxes=100, | ||
plugin_version="1", | ||
score_activation=0, | ||
score_threshold=0.25): | ||
out = g.op("TRT::EfficientNMS_TRT", | ||
boxes, | ||
scores, | ||
background_class_i=background_class, | ||
box_coding_i=box_coding, | ||
iou_threshold_f=iou_threshold, | ||
max_output_boxes_i=max_output_boxes, | ||
plugin_version_s=plugin_version, | ||
score_activation_i=score_activation, | ||
score_threshold_f=score_threshold, | ||
outputs=4) | ||
nums, boxes, scores, classes = out | ||
return nums,boxes,scores,classes | ||
|
||
|
||
|
||
class ONNX_ORT(nn.Module): | ||
|
||
def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=640, device=None): | ||
super().__init__() | ||
self.device = device if device else torch.device("cpu") | ||
self.max_obj = torch.tensor([max_obj]).to(device) | ||
self.iou_threshold = torch.tensor([iou_thres]).to(device) | ||
self.score_threshold = torch.tensor([score_thres]).to(device) | ||
self.max_wh = max_wh | ||
self.convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]], | ||
dtype=torch.float32, | ||
device=self.device) | ||
|
||
def forward(self, x): | ||
box = x[:, :, :4] | ||
conf = x[:, :, 4:5] | ||
score = x[:, :, 5:] | ||
score *= conf | ||
box @= self.convert_matrix | ||
objScore, objCls = score.max(2, keepdim=True) | ||
dis = objCls.float() * self.max_wh | ||
nmsbox = box + dis | ||
objScore1 = objScore.transpose(1, 2).contiguous() | ||
selected_indices = ORT_NMS.apply(nmsbox, objScore1, self.max_obj, self.iou_threshold, self.score_threshold) | ||
X, Y = selected_indices[:, 0], selected_indices[:, 2] | ||
resBoxes = box[X, Y, :] | ||
resClasses = objCls[X, Y, :].float() | ||
resScores = objScore[X, Y, :] | ||
X = X.unsqueeze(1).float() | ||
return torch.concat([X, resBoxes, resClasses, resScores], 1) | ||
|
||
class ONNX_TRT(nn.Module): | ||
|
||
def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None ,device=None): | ||
super().__init__() | ||
assert max_wh is None | ||
self.device = device if device else torch.device('cpu') | ||
self.background_class = -1, | ||
self.box_coding = 0, | ||
self.iou_threshold = iou_thres | ||
self.max_obj = max_obj | ||
self.plugin_version = '1' | ||
self.score_activation = 0 | ||
self.score_threshold = score_thres | ||
self.convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]], | ||
dtype=torch.float32, | ||
device=self.device) | ||
|
||
def forward(self, x): | ||
box = x[:, :, :4] | ||
conf = x[:, :, 4:5] | ||
score = x[:, :, 5:] | ||
score *= conf | ||
box @= self.convert_matrix | ||
num_det, det_boxes, det_scores, det_classes = TRT_NMS.apply(box, score, self.background_class, self.box_coding, | ||
self.iou_threshold, self.max_obj, | ||
self.plugin_version, self.score_activation, | ||
self.score_threshold) | ||
return num_det, det_boxes, det_scores, det_classes | ||
|
||
|
||
class End2End(nn.Module): | ||
|
||
def __init__(self, model, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None, device=None): | ||
super().__init__() | ||
device = device if device else torch.device('cpu') | ||
self.model = model.to(device) | ||
self.patch_model = ONNX_TRT if max_wh is None else ONNX_ORT | ||
self.end2end = self.patch_model(max_obj, iou_thres, score_thres, max_wh, device) | ||
self.end2end.eval() | ||
|
||
def forward(self, x): | ||
x = self.model(x) | ||
x = self.end2end(x) | ||
return x |