Skip to content

Commit

Permalink
Merge branch 'meituan:main' into patch-1
Browse files Browse the repository at this point in the history
  • Loading branch information
triple-Mu authored Jun 27, 2022
2 parents dfc9cef + 1d1335c commit d720793
Show file tree
Hide file tree
Showing 12 changed files with 1,161 additions and 140 deletions.
100 changes: 100 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -1,4 +1,104 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
**/*.pyc

# C extensions

# Distribution / packaging
.Python
build/
runs/
weights/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
parts/
sdist/
var/
wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST

# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec

# Installer logs
pip-log.txt
pip-delete-this-directory.txt

# Unit test / coverage reports
htmlcov/
.tox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
.hypothesis/
.pytest_cache/

# Translations
*.mo
*.pot

# Django stuff:
*.log
local_settings.py
db.sqlite3

# Flask stuff:
instance/
.webassets-cache

# Scrapy stuff:
.scrapy

# Sphinx documentation
docs/_build/

# PyBuilder
target/

# Jupyter Notebook
.ipynb_checkpoints

# pyenv
.python-version

# celery beat schedule file
celerybeat-schedule

# SageMath parsed files
*.sage.py

# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/

# Spyder project settings
.spyderproject
.spyproject

# Rope project settings
.ropeproject

# custom
.DS_Store

# Pytorch
*.pth
10 changes: 5 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
# YOLOv6
# MT-YOLOv6 [About Naming YOLOv6](./docs/About_naming_yolov6.md)

## Introduction

YOLOv6 is a single-stage object detection framework dedicated to industrial application, with hardware-friendly efficient design and high performance.
YOLOv6 is a single-stage object detection framework dedicated to industrial applications, with hardware-friendly efficient design and high performance.

<img src="assets/picture.png" width="800">

Expand Down Expand Up @@ -33,12 +33,12 @@ pip install -r requirements.txt

### Inference

First, download a pretrained model from the YOLOv6 release
First, download a pretrained model from the YOLOv6 [release](https://github.com/meituan/YOLOv6/releases/tag/0.1.0)

Second, run inference with `tools/infer.py`

```shell
python tools/infer.py --weights yolov6s.pt --source [img.jpg / imgdir]
python tools/infer.py --weights yolov6s.pt --source img.jpg / imgdir
yolov6n.pt
```

Expand All @@ -47,7 +47,7 @@ python tools/infer.py --weights yolov6s.pt --source [img.jpg / imgdir]
Single GPU

```shell
python tools/train.py --batch 256 --conf configs/yolov6s.py --data data/coco.yaml --device 0
python tools/train.py --batch 32 --conf configs/yolov6s.py --data data/coco.yaml --device 0
configs/yolov6n.py
```

Expand Down
12 changes: 12 additions & 0 deletions docs/About_naming_yolov6.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
# About the naming of YOLOv6

### WHY named YOLOv6 ?
The full name is actually MT-YOLOv6, which is called YOLOv6 for brevity. Our work is majorly inspired by the original idea of the one-stage YOLO detection algorithm and the implementation has leveraged various techniques and tricks of former relevant work . Therefore, we named the project YOLOv6 to pay tribute to the work of YOLO series. Furthermore, we have indeed adopted some novel method and made solid engineering improvements to dedicate the algorithm to industrial applications.
As for the project, we'll continue to improve and maintain it, contributing more values for industrial applications.

P.S. We are contacting the authors of YOLO series about the naming of YOLOv6.

Thanks for your attention!



1 change: 1 addition & 0 deletions tools/quantization/mnn/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
# Coming soon
210 changes: 210 additions & 0 deletions tools/quantization/tensorrt/post_training/Calibrator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,210 @@
#
# Modified by Meituan
# 2022.6.24
#

# Copyright 2019 NVIDIA Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import glob
import random
import logging
import cv2

import numpy as np
from PIL import Image
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit

logging.basicConfig(level=logging.DEBUG,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S")
logger = logging.getLogger(__name__)

def preprocess_yolov6(image, channels=3, height=224, width=224):
"""Pre-processing for YOLOv6-based Object Detection Models
Parameters
----------
image: PIL.Image
The image resulting from PIL.Image.open(filename) to preprocess
channels: int
The number of channels the image has (Usually 1 or 3)
height: int
The desired height of the image (usually 640)
width: int
The desired width of the image (usually 640)
Returns
-------
img_data: numpy array
The preprocessed image data in the form of a numpy array
"""
# Get the image in CHW format
resized_image = image.resize((width, height), Image.BILINEAR)
img_data = np.asarray(resized_image).astype(np.float32)

if len(img_data.shape) == 2:
# For images without a channel dimension, we stack
img_data = np.stack([img_data] * 3)
logger.debug("Received grayscale image. Reshaped to {:}".format(img_data.shape))
else:
img_data = img_data.transpose([2, 0, 1])

mean_vec = np.array([0.0, 0.0, 0.0])
stddev_vec = np.array([1.0, 1.0, 1.0])
assert img_data.shape[0] == channels

for i in range(img_data.shape[0]):
# Scale each pixel to [0, 1] and normalize per channel.
img_data[i, :, :] = (img_data[i, :, :] / 255.0 - mean_vec[i]) / stddev_vec[i]

return img_data

def get_int8_calibrator(calib_cache, calib_data, max_calib_size, calib_batch_size):
# Use calibration cache if it exists
if os.path.exists(calib_cache):
logger.info("Skipping calibration files, using calibration cache: {:}".format(calib_cache))
calib_files = []
# Use calibration files from validation dataset if no cache exists
else:
if not calib_data:
raise ValueError("ERROR: Int8 mode requested, but no calibration data provided. Please provide --calibration-data /path/to/calibration/files")

calib_files = get_calibration_files(calib_data, max_calib_size)

# Choose pre-processing function for INT8 calibration
preprocess_func = preprocess_yolov6

int8_calibrator = ImageCalibrator(calibration_files=calib_files,
batch_size=calib_batch_size,
cache_file=calib_cache)
return int8_calibrator


def get_calibration_files(calibration_data, max_calibration_size=None, allowed_extensions=(".jpeg", ".jpg", ".png")):
"""Returns a list of all filenames ending with `allowed_extensions` found in the `calibration_data` directory.
Parameters
----------
calibration_data: str
Path to directory containing desired files.
max_calibration_size: int
Max number of files to use for calibration. If calibration_data contains more than this number,
a random sample of size max_calibration_size will be returned instead. If None, all samples will be used.
Returns
-------
calibration_files: List[str]
List of filenames contained in the `calibration_data` directory ending with `allowed_extensions`.
"""

logger.info("Collecting calibration files from: {:}".format(calibration_data))
calibration_files = [path for path in glob.iglob(os.path.join(calibration_data, "**"), recursive=True)
if os.path.isfile(path) and path.lower().endswith(allowed_extensions)]
logger.info("Number of Calibration Files found: {:}".format(len(calibration_files)))

if len(calibration_files) == 0:
raise Exception("ERROR: Calibration data path [{:}] contains no files!".format(calibration_data))

if max_calibration_size:
if len(calibration_files) > max_calibration_size:
logger.warning("Capping number of calibration images to max_calibration_size: {:}".format(max_calibration_size))
random.seed(42) # Set seed for reproducibility
calibration_files = random.sample(calibration_files, max_calibration_size)

return calibration_files


# https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/python_api/infer/Int8/EntropyCalibrator2.html
class ImageCalibrator(trt.IInt8EntropyCalibrator2):
"""INT8 Calibrator Class for Imagenet-based Image Classification Models.
Parameters
----------
calibration_files: List[str]
List of image filenames to use for INT8 Calibration
batch_size: int
Number of images to pass through in one batch during calibration
input_shape: Tuple[int]
Tuple of integers defining the shape of input to the model (Default: (3, 224, 224))
cache_file: str
Name of file to read/write calibration cache from/to.
preprocess_func: function -> numpy.ndarray
Pre-processing function to run on calibration data. This should match the pre-processing
done at inference time. In general, this function should return a numpy array of
shape `input_shape`.
"""

def __init__(self, calibration_files=[], batch_size=32, input_shape=(3, 224, 224),
cache_file="calibration.cache", use_cv2=False):
super().__init__()
self.input_shape = input_shape
self.cache_file = cache_file
self.batch_size = batch_size
self.batch = np.zeros((self.batch_size, *self.input_shape), dtype=np.float32)
self.device_input = cuda.mem_alloc(self.batch.nbytes)

self.files = calibration_files
self.use_cv2 = use_cv2
# Pad the list so it is a multiple of batch_size
if len(self.files) % self.batch_size != 0:
logger.info("Padding # calibration files to be a multiple of batch_size {:}".format(self.batch_size))
self.files += calibration_files[(len(calibration_files) % self.batch_size):self.batch_size]

self.batches = self.load_batches()
self.preprocess_func = preprocess_yolov6

def load_batches(self):
# Populates a persistent self.batch buffer with images.
for index in range(0, len(self.files), self.batch_size):
for offset in range(self.batch_size):
if self.use_cv2:
image = cv2.imread(self.files[index + offset])
else:
image = Image.open(self.files[index + offset])
self.batch[offset] = self.preprocess_func(image, *self.input_shape)
logger.info("Calibration images pre-processed: {:}/{:}".format(index+self.batch_size, len(self.files)))
yield self.batch

def get_batch_size(self):
return self.batch_size

def get_batch(self, names):
try:
# Assume self.batches is a generator that provides batch data.
batch = next(self.batches)
# Assume that self.device_input is a device buffer allocated by the constructor.
cuda.memcpy_htod(self.device_input, batch)
return [int(self.device_input)]
except StopIteration:
# When we're out of batches, we return either [] or None.
# This signals to TensorRT that there is no calibration data remaining.
return None

def read_calibration_cache(self):
# If there is a cache, use it instead of calibrating again. Otherwise, implicitly return None.
if os.path.exists(self.cache_file):
with open(self.cache_file, "rb") as f:
logger.info("Using calibration cache to save time: {:}".format(self.cache_file))
return f.read()

def write_calibration_cache(self, cache):
with open(self.cache_file, "wb") as f:
logger.info("Caching calibration data for future use: {:}".format(self.cache_file))
f.write(cache)
Loading

0 comments on commit d720793

Please sign in to comment.