ParaText is a C++ library to read text files in parallel on multi-core machines. The alpha release includes a CSV reader and Python bindings. The library itself has no dependencies other than the standard library.
ParaText has the following dependencies:
- a fully C++11-compliant C++ compiler (gcc 4.8 or above, clang 3.4 or above)
- SWIG 2.0.7 or above (Python 2 bindings)
- SWIG 3.0.8 or above (Python 3 bindings)
- Python 2.7 or 3.5
- setuptools
- numpy
Pandas is required only if using ParaText to read CSV files into Pandas. The SWIG available from Ubuntu 14.04 does not work with Python 3.
Anaconda packages the latest version of SWIG that works properly with Python 3. You can install it as follows:
conda install swig
First, go into the python
directory:
cd python/
Then run setup.py
:
python setup.py build install
Use the --prefix
option if you prefer to install ParaText to a
different location:
cd python/
python setup.py build install --prefix=/my/prefix/dir
First, import the paratext
Python package.
import paratext
A CSV file can be loaded into Pandas in just one line of code using
the load_csv_to_pandas
function.
df = paratext.load_csv_to_pandas("hepatitis.csv")
The data frame looks something like this:
In [1]: print df.head()
AGE SEX STEROID ANTIVIRALS FATIGUE MALAISE ANOREXIA LIVER_BIG \
0 30 male no no no no no no
1 50 female no no yes no no no
2 78 female yes no yes no no yes
3 31 female nan yes no no no yes
4 34 female yes no no no no yes
LIVER_FIRM SPLEEN_PALPABLE SPIDERS ASCITES VARICES BILIRUBIN \
0 no no no no no 1.0
1 no no no no no 0.9
2 no no no no no 0.7
3 no no no no no 0.7
4 no no no no no 1.0
ALK_PHOSPHATE SGOT ALBUMIN PROTIME HISTOLOGY Class
0 85 18 4.0 NaN no LIVE
1 135 42 3.5 NaN no LIVE
2 96 32 4.0 NaN no LIVE
3 46 52 4.0 80 no LIVE
4 NaN 200 4.0 NaN no LIVE
A Python dictionary of arrays is preferable over a DataFrame
if the memory budget is very tight. The load_csv_to_dict
loads a CSV file, storing the columns as a dictionary of
arrays.
dict_frame, levels = paratext.load_csv_to_dict(filename)
It returns a two element tuple. The first dict_frame
is a Python
dictionary that maps column names to column data. The second levels
is also a Python dictionary keyed by column name. It contains a list
of level strings for each categorical column.
The following code visits the columns. For each column, it
prints its name, the first 5 values of its data, and the categorical
levels (None
if not categorical).
for key in dict_frame.keys():
print key, repr(dict_frame[key][0:5]), levels.get(key, None)
This gives the following output:
PROTIME array([ nan, nan, nan, 80., nan], dtype=float32) None
LIVER_BIG array([0, 0, 1, 1, 1], dtype=uint8) ['no' 'yes' 'nan']
ALBUMIN array([ 4. , 3.5, 4. , 4. , 4. ], dtype=float32) None
ALK_PHOSPHATE array([ 85., 135., 96., 46., nan], dtype=float32) None
ANTIVIRALS array([0, 0, 0, 1, 0], dtype=uint8) ['no' 'yes']
HISTOLOGY array([0, 0, 0, 0, 0], dtype=uint8) ['no' 'yes']
BILIRUBIN array([ 1., 0.89999998, 0.69999999, 0.69999999, 1. ], dtype=float32) None
AGE array([30, 50, 78, 31, 34], dtype=uint8) None
SEX array([0, 1, 1, 1, 1], dtype=uint8) ['male' 'female']
STEROID array([0, 0, 1, 2, 1], dtype=uint8) ['no' 'yes' 'nan']
SGOT array([ 18., 42., 32., 52., 200.], dtype=float32) None
MALAISE array([0, 0, 0, 0, 0], dtype=uint8) ['no' 'yes' 'nan']
FATIGUE array([0, 1, 1, 0, 0], dtype=uint8) ['no' 'yes' 'nan']
SPIDERS array([0, 0, 0, 0, 0], dtype=uint8) ['no' 'yes' 'nan']
VARICES array([0, 0, 0, 0, 0], dtype=uint8) ['no' 'nan' 'yes']
LIVER_FIRM array([0, 0, 0, 0, 0], dtype=uint8) ['no' 'yes' 'nan']
SPLEEN_PALPABLE array([0, 0, 0, 0, 0], dtype=uint8) ['no' 'yes' 'nan']
ASCITES array([0, 0, 0, 0, 0], dtype=uint8) ['no' 'yes' 'nan']
Class array([0, 0, 0, 0, 0], dtype=uint8) ['LIVE' 'DIE']
ANOREXIA array([0, 0, 0, 0, 0], dtype=uint8) ['no' 'yes' 'nan']
All categorical columns in this data set have 3 or fewer levels so
they are all uint8
. A string representation uses at least 8 times
as much space, but it can also be less computationally efficient. An
integer representation is ideal for learning on categorical columns.
Integer comparisons over contiguous integer buffers are pretty cheap
compared to exhaustive string comparisons on (potentially)
discontiguous string values. This makes a big difference for
combinatorial learning algorithms.
ParaText supports reading CSV files with multi-line fields in parallel. This feature must be explicitly activated as it requires extra overhead to adjust the boundaries of the chunks processed by the workers.
df = paratext.load_csv_to_pandas("messy.csv", allow_quoted_newlines=True)
ParaText detects the presence of a header. This can be turned off with
no_header=True
.
This library distinguishes between a column's data type and its semantics.
The semantics defines how to interpret a column (e.g. numeric vs. categorical).
and the data type (uint8
, int64
, float
, etc.) is the type for encoding
column values.
Three semantic types are supported:
-
num
: numeric data. -
cat
: categorical data. -
text
: large strings like e-mails and text documents.
ParaText supports (u)int(8|16|32|64)|float|double|string
data types.
Most CSV loading functions in ParaText have the following parameters:
-
cat_names
: A list of column names to force as categorical regardless of the inferred type. -
text_names
: A list of column names that should be treated as rich text regardless of its inferred type. -
num_names
: A list of column names that should be treated as numeric regardless of its inferred type. -
num_threads
: The number of parser threads to spawn. The default is the number of cores. -
allow_quoted_newlines
: Allows multi-line text fields. This is turned off by default. -
no_header
: Do not auto-detect the presence of a header. Assume the first line is data. This is turned off by default. -
max_level_name_length
: If a field's length exceeds this value, the entire column is treated as text rather than categorical. The default is unlimited. -
max_levels
: The maximum number of levels of a categorical column. The default is unlimited. -
number_only
: Whether it can be safely assumed the columns only contain numbers. The default is unlimited. -
block_size
: The number of bytes to read at a time in each worker thread. The default is unlimited.
ParaText supports backslash escape characters:
* `\t': tab
* `\n': newline
* `\r': carriage return
* `\v': vertical tab
* `\0': null terminator (0x00)
* `\b': backspace
* '\xnn': an 8-bit character represented with a 2 digit hexidecimal number.
* '\unnnn': a Unicode code point represented as 4-digit hexidecimal number.
* '\Unnnnnnnn': a Unicode code point represented as 8-digit hexiecimal number.
ParaText does yet support parallel CSV writing. However, it bundles a CSV writer that can be used to write DataFrames with arbitrary string and byte buffer data in a lossless fashion.
If a character in a Python string
, unicode
, or bytes
object could be treated as non-data when parsed (e.g. a doublequote or
escape character), it is escaped. Moreover, any character that is outside
the desired encoding is also escaped. This enables, for example,
the lossless writing of non-UTF-8 to a UTF-8 file.
For example, to restrict the encoding to 7-bit printable ASCII, pass
out_encoding='printable_ascii'
import paratext.serial
df = pandas.DataFrame({"X": [b"\xff\\\n \" oh my!"]})
paratext.serial.save_frame("lossless.csv", df, allow_quoted_newlines=True, out_encoding='printable_ascii', dos=False)
This results in a file:
"X"
"\xff\\
\" oh my!"
Instead, pass out_encoding='utf-8'
to save_frame
.
import paratext.serial
df = pandas.DataFrame({"X": [b"\xff\\\n \" oh my!"],"Y": ["\U0001F600"]})
paratext.serial.save_frame("lossless2.csv", df, allow_quoted_newlines=True, out_encoding='utf-8', dos=False)
Now, the file only escapes cells in the DataFrame with non-UTF8 data. All other UTF8 characters are preserved.
"X","Y"
"\xff\\
\" oh my!","<U+1F600>"
ParaText is a work-in-progress. There are a few unimplemented features that may prevent it from working on all CSV files. We note them below.
-
There is no way to supply type hints (e.g.
uint64
orfloat
) of a column. Only the interpretation of a column (numeric, categorical, or text) can be forced. -
DateTime will be supported in a future release.