Skip to content

Fine-tunes an InceptionV3 model on the Flowers training set.

Notifications You must be signed in to change notification settings

beacandler/tf-slim-demo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TF-slim-flowers

Fine-tunes an InceptionV3 model on the Flowers training set. InceptionV3 paper)

Contents

  1. Technology
  2. Structure
  3. Running
  4. Demo

Technology

  1. Docker
  2. Data parallel read
  3. TF-Slim
  4. tensorboard
  5. TF-distribute

Structure

.
├── docker-compose.yml
├── Dockerfile // docker build file
├── log 
│   ├── train_dir
│   └── eval_dir
├── nvidia-docker-compose.yml
├── README.md
├── src
│   ├── datasets // generate tfrecord and slim Dataset object 
│   │   ├── __init__.py
│   │   ├── convert_flowers.py //  generate tfrecord
│   │   ├── dataset_utils.py 
│   │   └── flowers.py
│   ├── models // pre-trained model 
│   │   └── inception_v3.ckpt
│   ├── nets // network architecture
│   │   ├── __init__.py 
│   │   ├── inception_utils.py
│   │   ├── inception_v3.py
│   │   ├── inception_v3_test.py
│   │   ├── lenet.py
│   │   └── nets_factory.py
│   ├── preprocessing // data preprecessing
│   │   ├── __init__.py 
│   │   ├── inception_preprocessing.py
│   │   ├── lenet_preprocessing.py
│   │   └── preprocessing_factory.py
│   ├── scriptes
│   │   ├── download_uncompress_flows.sh
│   │   ├── eval_inception_v3_on_flowers.sh
│   │   ├── finetune_inception_v3_on_flowers.sh
│   │   └── unittest.sh
│   ├── common_flags.py // common flags for train/val
│   ├── __init__.py
│   ├── data_provider.py // slim DataProvider object 
│   ├── data_provider_test.py
│   ├── eval.py
│   ├── model.py
│   ├── train.py
│   └── utils.py
└──── screenshots

Running

Configure environment

  1. install Docker-ce
  2. install nvidia-docker(not nvidia-docker2)
  3. install docker-compose
  4. install nvidia-docker-compse
  5. test everything Ok
nvidia-docker run --rm nvidia/cuda nvidia-smi

Entering enviroment

cd ${ROOT} // suppose ROOT is the root of the project
1. nvidia-docker-compose run --rm --service-ports tf-slim-demo bash
2. nvidia-smi // test OK

run scripts

cd src
1. bash ./scripts/unittest.sh
2. bash ./scripts/download_uncompress_flowers.sh

run scripts

# create dataset
1. python ./datasets/convert_flowers.py

Suppose you have two GPUs(0&1), if not, you must modify training and evaluation script to prevent them running parallelly.

run training/evaluation

# GPU 0 for training
cd ${ROOT}
bash ./src/scripts/finetune_inception_v3_on_flowers.sh
# GPU 1 for evaluation
bash ./src/scripts/eval_inception_v3_on_flowers.sh

show tensorboard

    attention: docker have not its own graphic X server, so it must connect to
    host X-server, there are various way to do this, but I recommend you 
    do this using X11 Socket, see docker-compose.yml for detail
    
    All ready, please open a new Terminal to entery the same container 
    which is running train/evaluation
    
    1. docker exec -it -e DISPLAY=$DISPLAY ${CONTAINER_DIR} bash
    2. tensorboard --logdir=train:./log/train_dir,eval:./log/eval_dir
    3. go to chrome : http://localhost:6006/
    You can get everything you want!

Demo

screenshots

  1. tfrecord tfrecord
  2. train train
  3. eval eval eval
  4. tensorboard for summary summary
  5. tensorboard for graph graph
  6. tensorboard for image image image image
  7. tensorboard for TotalLoss TotalLoss
  8. tensorboard for eval_accuracy eval_accuracy

About

Fine-tunes an InceptionV3 model on the Flowers training set.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published