Skip to content

bidur/satellite-image-deep-learning

 
 

Repository files navigation

Sponsor

Introduction

This document primarily lists resources for performing deep learning (DL) on satellite imagery. To a lesser extent Machine learning (ML, e.g. random forests, stochastic gradient descent) are also discussed, as are classical image processing techniques.

Top links

Table of contents

Datasets

WorldView - SpaceNet

Sentinel

  • As part of the EU Copernicus program, multiple Sentinel satellites are capturing imagery -> see wikipedia.
  • 13 bands, Spatial resolution of 10 m, 20 m and 60 m, 290 km swath, the temporal resolution is 5 days
  • Open access data on GCP
  • Paid access via sentinel-hub and python-api.
  • Example loading sentinel data in a notebook
  • so2sat on Tensorflow datasets - So2Sat LCZ42 is a dataset consisting of co-registered synthetic aperture radar and multispectral optical image patches acquired by the Sentinel-1 and Sentinel-2 remote sensing satellites, and the corresponding local climate zones (LCZ) label. The dataset is distributed over 42 cities across different continents and cultural regions of the world.
  • eurosat - EuroSAT dataset is based on Sentinel-2 satellite images covering 13 spectral bands and consisting of 10 classes with 27000 labeled and geo-referenced samples.
  • bigearthnet - The BigEarthNet is a new large-scale Sentinel-2 benchmark archive, consisting of 590,326 Sentinel-2 image patches. The image patch size on the ground is 1.2 x 1.2 km with variable image size depending on the channel resolution. This is a multi-label dataset with 43 imbalanced labels.

Landsat

Shuttle Radar Topography Mission (digital elevation maps)

Aerial imagery (drones)

Kaggle

Kaggle hosts several large satellite image datasets (> 1 GB). A list if general image datasets is here. A list of land-use datasets is here. The kaggle blog is an interesting read.

Kaggle - Amazon from space - classification challenge

Kaggle - DSTL - segmentation challenge

Kaggle - Airbus Ship Detection Challenge

Kaggle - Draper - place images in order of time

Kaggle - Deepsat - classification challenge

Not satellite but airborne imagery. Each sample image is 28x28 pixels and consists of 4 bands - red, green, blue and near infrared. The training and test labels are one-hot encoded 1x6 vectors. Each image patch is size normalized to 28x28 pixels. Data in .mat Matlab format. JPEG?

  • Imagery source
  • Sat4 500,000 image patches covering four broad land cover classes - barren land, trees, grassland and a class that consists of all land cover classes other than the above three Example notebook
  • Sat6 405,000 image patches each of size 28x28 and covering 6 landcover classes - barren land, trees, grassland, roads, buildings and water bodies.
  • Deep Gradient Boosted Learning article

Kaggle - other

Alternative datasets

There are a variety of datasets suitable for land classification problems.

Tensorflow datasets

  • There are a number of remote sensing datasets
  • resisc45 - RESISC45 dataset is a publicly available benchmark for Remote Sensing Image Scene Classification (RESISC), created by Northwestern Polytechnical University (NWPU). This dataset contains 31,500 images, covering 45 scene classes with 700 images in each class.
  • eurosat - EuroSAT dataset is based on Sentinel-2 satellite images covering 13 spectral bands and consisting of 10 classes with 27000 labeled and geo-referenced samples.
  • bigearthnet - The BigEarthNet is a new large-scale Sentinel-2 benchmark archive, consisting of 590,326 Sentinel-2 image patches. The image patch size on the ground is 1.2 x 1.2 km with variable image size depending on the channel resolution. This is a multi-label dataset with 43 imbalanced labels.

UC Merced

AWS datasets

Quilt

  • Several people have uploaded datasets to Quilt

Google Earth Engine

Weather Datasets

Online computing resources

Generally a GPU is required for DL, and this section lists Jupyter environments with GPU available. There is a good overview of online Jupyter envs on the fast.at site.

Google Colab

  • Collaboratory notebooks with GPU as a backend for free for 12 hours at a time. Note that the GPU may be shared with other users, so if you aren't getting good performance try reloading.
  • Tensorflow available & pytorch can be installed, useful articles

Kaggle - also Google!

  • Free to use
  • GPU Kernels - may run for 1 hour
  • Tensorflow, pytorch & fast.ai available
  • Advantage that many datasets are already available
  • Read

Floydhub

### Clouderizer

  • https://clouderizer.com/
  • Clouderizer $5 month for 200 hours (Robbie plan)
  • Run projects locally, on cloud or both.
  • SSH terminal, Jupyter Notebooks and Tensorboard are securely accessible from Clouderizer Web Console.

Paperspace

Crestle

Interesting DL projects

Raster Vision by Azavea

RoboSat

RoboSat.Pink

DeepOSM

DeepNetsForEO - segmentation

Skynet-data

Production

Custom REST API

Tensorflow Serving

TensorFlow Serving makes it easy to deploy new algorithms and experiments, while keeping the same server architecture and APIs. Multiple models, or indeed multiple versions of the same model, can be served simultaneously. TensorFlow Serving comes with a scheduler that groups individual inference requests into batches for joint execution on a GPU

Floydhub

  • Allows exposing model via rest API

modeldepot

Image formats & catalogues

STAC - SpatioTemporal Asset Catalog

State of the art

What are companies doing?

Online platforms for Geo analysis

  • This article discusses some of the available platforms -> TLDR Pangeo rocks, but must BYO imagery
  • Pangeo - open source resources for parallel processing using Dask and Xarray http://pangeo.io/index.html
  • Airbus Sandbox -> will provide access to imagery
  • Descartes Labs -> access to EO imagery from a variety of providers via python API -> not clear which imagery is available (Airbus + others?) or pricing
  • DigitalGlobe have a cloud hosted Jupyter notebook platform called GBDX. Cloud hosting means they can guarantee the infrastructure supports their algorithms, and they appear to be close/closer to deploying DL. Tutorial notebooks here. Only Sentinel-2 and Landsat data on free tier.
  • Planet have a Jupyter notebook platform which can be deployed locally and requires an API key (14 days free). They have a python wrapper (2.7..) to their rest API. No price after 14 day trial.

Techniques

This section explores the different techniques (DL, ML & classical) people are applying to common problems in satellite imagery analysis. Classification problems are the most simply addressed via DL, object detection is harder, and cloud detection harder still (niche interest).

Land classification

Semantic segmentation

Change detection

Image registration

Object detection

Cloud detection

  • A subset of the object detection problem, but surprisingly challenging
  • From this article on sentinelhub there are three popular classical algorithms that detects thresholds in multiple bands in order to identify clouds. In the same article they propose using semantic segmentation combined with a CNN for a cloud classifier (excellent review paper here), but state that this requires too much compute resources.
  • This article compares a number of ML algorithms, random forests, stochastic gradient descent, support vector machines, Bayesian method.
  • DL..

Super resolution

Pansharpening

Stereo imaging for terrain mapping & DEMs

Lidar

NVDI - vegetation index

SAR

Aerial imagery (drones)

For fun

Useful open source software

Useful github repos

  • torchvision-enhance -> Enhance PyTorch vision for semantic segmentation, multi-channel images and TIF file,...
  • dl-satellite-docker -> docker files for geospatial analysis, including tensorflow, pytorch, gdal, xgboost...

Useful References

✨ Support this work

https://github.com/sponsors/robmarkcole

If you or your business find this work useful please consider becoming a sponsor at the link above, this really helps justify the time I invest in maintaining this repo. As we say in England, 'every little helps' - thanks in advance!

About

Resources for deep learning with satellite & aerial imagery

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 99.8%
  • Python 0.2%