forked from krahets/hello-algo
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: add dart code for chapter_tree (krahets#448)
- Loading branch information
Showing
6 changed files
with
533 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,226 @@ | ||
/** | ||
* File: avl_tree.dart | ||
* Created Time: 2023-04-04 | ||
* Author: liuyuxin ([email protected]) | ||
*/ | ||
|
||
import 'dart:math'; | ||
import '../utils/print_util.dart'; | ||
import '../utils/tree_node.dart'; | ||
|
||
class AVLTree { | ||
TreeNode? root; | ||
|
||
/* 构造方法 */ | ||
AVLTree() { | ||
root = null; | ||
} | ||
|
||
/* 获取结点高度 */ | ||
int height(TreeNode? node) { | ||
return node == null ? -1 : node.height; | ||
} | ||
|
||
/* 更新结点高度 */ | ||
void updateHeight(TreeNode? node) { | ||
// 结点高度等于最高子树高度 + 1 | ||
node!.height = max(height(node.left), height(node.right)) + 1; | ||
} | ||
|
||
/* 获取平衡因子 */ | ||
int balanceFactor(TreeNode? node) { | ||
// 空结点平衡因子为 0 | ||
if (node == null) return 0; | ||
// 结点平衡因子 = 左子树高度 - 右子树高度 | ||
return height(node.left) - height(node.right); | ||
} | ||
|
||
/* 右旋操作 */ | ||
TreeNode? rightRotate(TreeNode? node) { | ||
TreeNode? child = node!.left; | ||
TreeNode? grandChild = child!.right; | ||
// 以 child 为原点,将 node 向右旋转 | ||
child.right = node; | ||
node.left = grandChild; | ||
// 更新结点高度 | ||
updateHeight(node); | ||
updateHeight(child); | ||
// 返回旋转后子树的根结点 | ||
return child; | ||
} | ||
|
||
/* 左旋操作 */ | ||
TreeNode? leftRotate(TreeNode? node) { | ||
TreeNode? child = node!.right; | ||
TreeNode? grandChild = child!.left; | ||
// 以 child 为原点,将 node 向左旋转 | ||
child.left = node; | ||
node.right = grandChild; | ||
// 更新结点高度 | ||
updateHeight(node); | ||
updateHeight(child); | ||
// 返回旋转后子树的根结点 | ||
return child; | ||
} | ||
|
||
/* 执行旋转操作,使该子树重新恢复平衡 */ | ||
TreeNode? rotate(TreeNode? node) { | ||
// 获取结点 node 的平衡因子 | ||
int factor = balanceFactor(node); | ||
// 左偏树 | ||
if (factor > 1) { | ||
if (balanceFactor(node!.left) >= 0) { | ||
// 右旋 | ||
return rightRotate(node); | ||
} else { | ||
// 先左旋后右旋 | ||
node.left = leftRotate(node.left); | ||
return rightRotate(node); | ||
} | ||
} | ||
// 右偏树 | ||
if (factor < -1) { | ||
if (balanceFactor(node!.right) <= 0) { | ||
// 左旋 | ||
return leftRotate(node); | ||
} else { | ||
// 先右旋后左旋 | ||
node.right = rightRotate(node.right); | ||
return leftRotate(node); | ||
} | ||
} | ||
// 平衡树,无需旋转,直接返回 | ||
return node; | ||
} | ||
|
||
/* 插入结点 */ | ||
TreeNode? insert(int val) { | ||
root = insertHelper(root, val); | ||
return root; | ||
} | ||
|
||
/* 递归插入结点(辅助方法) */ | ||
TreeNode? insertHelper(TreeNode? node, int val) { | ||
if (node == null) return TreeNode(val); | ||
/* 1. 查找插入位置,并插入结点 */ | ||
if (val < node.val) | ||
node.left = insertHelper(node.left, val); | ||
else if (val > node.val) | ||
node.right = insertHelper(node.right, val); | ||
else | ||
return node; // 重复结点不插入,直接返回 | ||
updateHeight(node); // 更新结点高度 | ||
/* 2. 执行旋转操作,使该子树重新恢复平衡 */ | ||
node = rotate(node); | ||
// 返回子树的根结点 | ||
return node; | ||
} | ||
|
||
/* 删除结点 */ | ||
TreeNode? remove(int val) { | ||
root = removeHelper(root, val); | ||
return root; | ||
} | ||
|
||
/* 递归删除结点(辅助方法) */ | ||
TreeNode? removeHelper(TreeNode? node, int val) { | ||
if (node == null) return null; | ||
/* 1. 查找结点,并删除之 */ | ||
if (val < node.val) | ||
node.left = removeHelper(node.left, val); | ||
else if (val > node.val) | ||
node.right = removeHelper(node.right, val); | ||
else { | ||
if (node.left == null || node.right == null) { | ||
TreeNode? child = node.left ?? node.right; | ||
// 子结点数量 = 0 ,直接删除 node 并返回 | ||
if (child == null) | ||
return null; | ||
// 子结点数量 = 1 ,直接删除 node | ||
else | ||
node = child; | ||
} else { | ||
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点 | ||
TreeNode? temp = getInOrderNext(node.right); | ||
node.right = removeHelper(node.right, temp!.val); | ||
node.val = temp.val; | ||
} | ||
} | ||
updateHeight(node); // 更新结点高度 | ||
/* 2. 执行旋转操作,使该子树重新恢复平衡 */ | ||
node = rotate(node); | ||
// 返回子树的根结点 | ||
return node; | ||
} | ||
|
||
/* 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) */ | ||
TreeNode? getInOrderNext(TreeNode? node) { | ||
if (node == null) return node; | ||
// 循环访问左子结点,直到叶结点时为最小结点,跳出 | ||
while (node!.left != null) { | ||
node = node.left; | ||
} | ||
return node; | ||
} | ||
|
||
/* 查找结点 */ | ||
TreeNode? search(int val) { | ||
TreeNode? cur = root; | ||
// 循环查找,越过叶结点后跳出 | ||
while (cur != null) { | ||
// 目标结点在 cur 的右子树中 | ||
if (val < cur.val) | ||
cur = cur.left; | ||
// 目标结点在 cur 的左子树中 | ||
else if (val > cur.val) | ||
cur = cur.right; | ||
// 目标结点与当前结点相等 | ||
else | ||
break; | ||
} | ||
return cur; | ||
} | ||
} | ||
|
||
void testInsert(AVLTree tree, int val) { | ||
tree.insert(val); | ||
print("\n插入结点 $val 后,AVL 树为"); | ||
printTree(tree.root); | ||
} | ||
|
||
void testRemove(AVLTree tree, int val) { | ||
tree.remove(val); | ||
print("\n删除结点 $val 后,AVL 树为"); | ||
printTree(tree.root); | ||
} | ||
|
||
/* Driver Code */ | ||
void main() { | ||
/* 初始化空 AVL 树 */ | ||
AVLTree avlTree = AVLTree(); | ||
/* 插入结点 */ | ||
// 请关注插入结点后,AVL 树是如何保持平衡的 | ||
testInsert(avlTree, 1); | ||
testInsert(avlTree, 2); | ||
testInsert(avlTree, 3); | ||
testInsert(avlTree, 4); | ||
testInsert(avlTree, 5); | ||
testInsert(avlTree, 8); | ||
testInsert(avlTree, 7); | ||
testInsert(avlTree, 9); | ||
testInsert(avlTree, 10); | ||
testInsert(avlTree, 6); | ||
|
||
/* 插入重复结点 */ | ||
testInsert(avlTree, 7); | ||
|
||
/* 删除结点 */ | ||
// 请关注删除结点后,AVL 树是如何保持平衡的 | ||
testRemove(avlTree, 8); // 删除度为 0 的结点 | ||
testRemove(avlTree, 5); // 删除度为 1 的结点 | ||
testRemove(avlTree, 4); // 删除度为 2 的结点 | ||
|
||
/* 查询结点 */ | ||
TreeNode? node = avlTree.search(7); | ||
print("\n查找到的结点对象为 $node,结点值 = ${node!.val}"); | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,162 @@ | ||
/** | ||
* File: binary_search_tree.dart | ||
* Created Time: 2023-04-04 | ||
* Author: liuyuxin ([email protected]) | ||
*/ | ||
|
||
import '../utils/print_util.dart'; | ||
import '../utils/tree_node.dart'; | ||
|
||
/* 二叉搜索树 */ | ||
TreeNode? root; | ||
|
||
void binarySearchTree(List<int> nums) { | ||
nums.sort(); // 排序数组 | ||
root = buildTree(nums, 0, nums.length - 1); // 构建二叉搜索树 | ||
} | ||
|
||
/* 获取二叉树的根节点 */ | ||
TreeNode? getRoot() { | ||
return root; | ||
} | ||
|
||
/* 构建二叉上搜索树 */ | ||
TreeNode? buildTree(List<int> nums, int i, int j) { | ||
if (i > j) { | ||
return null; | ||
} | ||
// 将数组中间结点作为根结点 | ||
int mid = (i + j) ~/ 2; | ||
TreeNode? root = TreeNode(nums[mid]); | ||
root.left = buildTree(nums, i, mid - 1); | ||
root.right = buildTree(nums, mid + 1, j); | ||
return root; | ||
} | ||
|
||
/* 查找结点 */ | ||
TreeNode? search(int num) { | ||
TreeNode? cur = root; | ||
// 循环查找,越过叶结点后跳出 | ||
while (cur != null) { | ||
// 目标结点在 cur 的右子树中 | ||
if (cur.val < num) | ||
cur = cur.right; | ||
// 目标结点在 cur 的左子树中 | ||
else if (cur.val > num) | ||
cur = cur.left; | ||
// 找到目标结点,跳出循环 | ||
else | ||
break; | ||
} | ||
// 返回目标结点 | ||
return cur; | ||
} | ||
|
||
/* 插入结点 */ | ||
TreeNode? insert(int num) { | ||
// 若树为空,直接提前返回 | ||
if (root == null) return null; | ||
TreeNode? cur = root; | ||
TreeNode? pre = null; | ||
// 循环查找,越过叶结点后跳出 | ||
while (cur != null) { | ||
// 找到重复结点,直接返回 | ||
if (cur.val == num) return null; | ||
pre = cur; | ||
// 插入位置在 cur 的右子树中 | ||
if (cur.val < num) | ||
cur = cur.right; | ||
// 插入位置在 cur 的左子树中 | ||
else | ||
cur = cur.left; | ||
} | ||
// 插入结点 val | ||
TreeNode? node = TreeNode(num); | ||
if (pre!.val < num) | ||
pre.right = node; | ||
else | ||
pre.left = node; | ||
return node; | ||
} | ||
|
||
/* 删除结点 */ | ||
TreeNode? remove(int num) { | ||
// 若树为空,直接提前返回 | ||
if (root == null) return null; | ||
|
||
TreeNode? cur = root; | ||
TreeNode? pre = null; | ||
// 循环查找,越过叶结点后跳出 | ||
while (cur != null) { | ||
// 找到待删除结点,跳出循环 | ||
if (cur.val == num) break; | ||
pre = cur; | ||
// 待删除结点在 cur 的右子树中 | ||
if (cur.val < num) | ||
cur = cur.right; | ||
// 待删除结点在 cur 的左子树中 | ||
else | ||
cur = cur.left; | ||
} | ||
// 若无待删除结点,直接返回 | ||
if (cur == null) return null; | ||
// 子结点数量 = 0 or 1 | ||
if (cur.left == null || cur.right == null) { | ||
// 当子结点数量 = 0 / 1 时, child = null / 该子结点 | ||
TreeNode? child = cur.left ?? cur.right; | ||
// 删除结点 cur | ||
if (pre!.left == cur) | ||
pre.left = child; | ||
else | ||
pre.right = child; | ||
} else { | ||
// 子结点数量 = 2 | ||
// 获取中序遍历中 cur 的下一个结点 | ||
TreeNode? nex = getInOrderNext(cur.right); | ||
int tem = nex!.val; | ||
// 递归删除结点 nex | ||
remove(nex.val); | ||
// 将 nex 的值复制给 cur | ||
cur.val = tem; | ||
} | ||
return cur; | ||
} | ||
|
||
/* 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) */ | ||
TreeNode? getInOrderNext(TreeNode? root) { | ||
if (root == null) return null; | ||
// 循环访问左子结点,直到叶结点时为最小结点,跳出 | ||
while (root!.left != null) { | ||
root = root.left; | ||
} | ||
return root; | ||
} | ||
|
||
/* Driver Code */ | ||
void main() { | ||
/* 初始化二叉搜索树 */ | ||
List<int> nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]; | ||
binarySearchTree(nums); | ||
print("\n初始化的二叉树为\n"); | ||
printTree(getRoot()); | ||
|
||
/* 查找结点 */ | ||
TreeNode? node = search(7); | ||
print("\n查找到的结点对象为 $node,结点值 = ${node?.val}"); | ||
|
||
/* 插入结点 */ | ||
node = insert(16); | ||
print("\n插入节点 16 后,二叉树为\n"); | ||
printTree(getRoot()); | ||
|
||
/* 删除结点 */ | ||
remove(1); | ||
print("\n删除结点 1 后,二叉树为\n"); | ||
printTree(getRoot()); | ||
remove(2); | ||
print("\n删除结点 2 后,二叉树为\n"); | ||
printTree(getRoot()); | ||
remove(4); | ||
print("\n删除结点 4 后,二叉树为\n"); | ||
printTree(getRoot()); | ||
} |
Oops, something went wrong.