Skip to content

Commit 2998f8f

Browse files
committed
SVM
1 parent b2640f5 commit 2998f8f

File tree

4 files changed

+3
-4
lines changed

4 files changed

+3
-4
lines changed

formula/LogisticRegression_01.wmf

0 Bytes
Binary file not shown.

formula/SVM.wmf

7.7 KB
Binary file not shown.

images/SVM_04.png

5.94 KB
Loading

readme.md

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -138,8 +138,7 @@ from sklearn.preprocessing import StandardScaler #引入缩放的包
138138

139139
### 3、正则化
140140
- 目的是为了防止过拟合
141-
- 在代价函数中加上一项![\frac{\lambda }{{2m}}\sum\limits_{j = 1}^m {\theta _j^2} ](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%5Cfrac%7B%5Clambda%20%7D%7B%7B2m%7D%7D%5Csum%5Climits_%7Bj%20%3D%201%7D%5Em%20%7B%5Ctheta%20_j%5E2%7D%20),所以最终的代价函数为:
142-
![J(\theta ) = - \frac{1}{m}\sum\limits_{i = 1}^m {[{y^{(i)}}\log ({h_\theta }({x^{(i)}}) + (1 - } {y^{(i)}})\log (1 - {h_\theta }({x^{(i)}})] + \frac{\lambda }{{2m}}\sum\limits_{j = 1}^m {\theta _j^2} ](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=J%28%5Ctheta%20%29%20%3D%20%20-%20%5Cfrac%7B1%7D%7Bm%7D%5Csum%5Climits_%7Bi%20%3D%201%7D%5Em%20%7B%5B%7By%5E%7B%28i%29%7D%7D%5Clog%20%28%7Bh_%5Ctheta%20%7D%28%7Bx%5E%7B%28i%29%7D%7D%29%20%2B%20%281%20-%20%7D%20%7By%5E%7B%28i%29%7D%7D%29%5Clog%20%281%20-%20%7Bh_%5Ctheta%20%7D%28%7Bx%5E%7B%28i%29%7D%7D%29%5D%20%2B%20%5Cfrac%7B%5Clambda%20%7D%7B%7B2m%7D%7D%5Csum%5Climits_%7Bj%20%3D%201%7D%5Em%20%7B%5Ctheta%20_j%5E2%7D%20)
141+
- 在代价函数中加上一项![J(\theta ) = - \frac{1}{m}\sum\limits_{i = 1}^m {[{y^{(i)}}\log ({h_\theta }({x^{(i)}}) + (1 - } {y^{(i)}})\log (1 - {h_\theta }({x^{(i)}})] + \frac{\lambda }{{2m}}\sum\limits_{j = 1}^n {\theta _j^2} ](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=J%28%5Ctheta%20%29%20%3D%20%20-%20%5Cfrac%7B1%7D%7Bm%7D%5Csum%5Climits_%7Bi%20%3D%201%7D%5Em%20%7B%5B%7By%5E%7B%28i%29%7D%7D%5Clog%20%28%7Bh_%5Ctheta%20%7D%28%7Bx%5E%7B%28i%29%7D%7D%29%20%2B%20%281%20-%20%7D%20%7By%5E%7B%28i%29%7D%7D%29%5Clog%20%281%20-%20%7Bh_%5Ctheta%20%7D%28%7Bx%5E%7B%28i%29%7D%7D%29%5D%20%2B%20%5Cfrac%7B%5Clambda%20%7D%7B%7B2m%7D%7D%5Csum%5Climits_%7Bj%20%3D%201%7D%5En%20%7B%5Ctheta%20_j%5E2%7D%20)
143142
- 注意j是重1开始的,因为theta(0)为一个常数项,X中最前面一列会加上1列1,所以乘积还是theta(0),feature没有关系,没有必要正则化
144143
- 正则化后的代价:
145144
```
@@ -650,10 +649,10 @@ def predict(Theta1,Theta2,X):
650649
-`y=0`时同样,用![\cos {t_0}(z)](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%5Ccos%20%7Bt_0%7D%28z%29)代替
651650
![enter description here][25]
652651
- 最终得到的代价函数为:
653-
![J(\theta ) = C\sum\limits_{i = 1}^m {[{y^{(i)}}\cos {t_1}({\theta ^T}{x^{(i)}}) + (1 - {y^{(i)}})\cos {t_0}({\theta ^T}{x^{(i)}})} ] + \frac{1}{2}\sum\limits_{j = 1}^m {\theta _j^2} ](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=J%28%5Ctheta%20%29%20%3D%20C%5Csum%5Climits_%7Bi%20%3D%201%7D%5Em%20%7B%5B%7By%5E%7B%28i%29%7D%7D%5Ccos%20%7Bt_1%7D%28%7B%5Ctheta%20%5ET%7D%7Bx%5E%7B%28i%29%7D%7D%29%20%2B%20%281%20-%20%7By%5E%7B%28i%29%7D%7D%29%5Ccos%20%7Bt_0%7D%28%7B%5Ctheta%20%5ET%7D%7Bx%5E%7B%28i%29%7D%7D%29%7D%20%5D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%5Csum%5Climits_%7Bj%20%3D%201%7D%5Em%20%7B%5Ctheta%20_j%5E2%7D%20)
652+
![J(\theta ) = C\sum\limits_{i = 1}^m {[{y^{(i)}}\cos {t_1}({\theta ^T}{x^{(i)}}) + (1 - {y^{(i)}})\cos {t_0}({\theta ^T}{x^{(i)}})} ] + \frac{1}{2}\sum\limits_{j = 1}^{\text{n}} {\theta _j^2} ](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=J%28%5Ctheta%20%29%20%3D%20C%5Csum%5Climits_%7Bi%20%3D%201%7D%5Em%20%7B%5B%7By%5E%7B%28i%29%7D%7D%5Ccos%20%7Bt_1%7D%28%7B%5Ctheta%20%5ET%7D%7Bx%5E%7B%28i%29%7D%7D%29%20%2B%20%281%20-%20%7By%5E%7B%28i%29%7D%7D%29%5Ccos%20%7Bt_0%7D%28%7B%5Ctheta%20%5ET%7D%7Bx%5E%7B%28i%29%7D%7D%29%7D%20%5D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%5Csum%5Climits_%7Bj%20%3D%201%7D%5E%7B%5Ctext%7Bn%7D%7D%20%7B%5Ctheta%20_j%5E2%7D%20)
654653
最后我们想要![\mathop {\min }\limits_\theta J(\theta )](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%5Cmathop%20%7B%5Cmin%20%7D%5Climits_%5Ctheta%20%20J%28%5Ctheta%20%29)
655654
- 之前我们逻辑回归中的代价函数为:
656-
![J(\theta ) = - \frac{1}{m}\sum\limits_{i = 1}^m {[{y^{(i)}}\log ({h_\theta }({x^{(i)}}) + (1 - } {y^{(i)}})\log (1 - {h_\theta }({x^{(i)}})]](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=J%28%5Ctheta%20%29%20%3D%20%20-%20%5Cfrac%7B1%7D%7Bm%7D%5Csum%5Climits_%7Bi%20%3D%201%7D%5Em%20%7B%5B%7By%5E%7B%28i%29%7D%7D%5Clog%20%28%7Bh_%5Ctheta%20%7D%28%7Bx%5E%7B%28i%29%7D%7D%29%20%2B%20%281%20-%20%7D%20%7By%5E%7B%28i%29%7D%7D%29%5Clog%20%281%20-%20%7Bh_%5Ctheta%20%7D%28%7Bx%5E%7B%28i%29%7D%7D%29%5D)
655+
![J(\theta ) = - \frac{1}{m}\sum\limits_{i = 1}^m {[{y^{(i)}}\log ({h_\theta }({x^{(i)}}) + (1 - } {y^{(i)}})\log (1 - {h_\theta }({x^{(i)}})] + \frac{\lambda }{{2m}}\sum\limits_{j = 1}^n {\theta _j^2} ](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=J%28%5Ctheta%20%29%20%3D%20%20-%20%5Cfrac%7B1%7D%7Bm%7D%5Csum%5Climits_%7Bi%20%3D%201%7D%5Em%20%7B%5B%7By%5E%7B%28i%29%7D%7D%5Clog%20%28%7Bh_%5Ctheta%20%7D%28%7Bx%5E%7B%28i%29%7D%7D%29%20%2B%20%281%20-%20%7D%20%7By%5E%7B%28i%29%7D%7D%29%5Clog%20%281%20-%20%7Bh_%5Ctheta%20%7D%28%7Bx%5E%7B%28i%29%7D%7D%29%5D%20%2B%20%5Cfrac%7B%5Clambda%20%7D%7B%7B2m%7D%7D%5Csum%5Climits_%7Bj%20%3D%201%7D%5En%20%7B%5Ctheta%20_j%5E2%7D%20)
657656
可以认为这里的![C = \frac{m}{\lambda }](http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=C%20%3D%20%5Cfrac%7Bm%7D%7B%5Clambda%20%7D),只是表达形式问题,这里`C`的值越大,SVM的决策边界的`margin`也越大,下面会说明
658657

659658
### 2、Large Margin

0 commit comments

Comments
 (0)