[NAACL 2025] Efficient Multi-Agent Collaboration with Tool Use for Online Planning in Complex Table Question Answering
conda create --name mact python=3.10 -y
conda activate mact
pip install -r requirements.txt
We support the following datasets:
- WTQ, TAT, CRT, SciTab, DataBench
- Each instance in the dataset should contain at least following fields:
{"statement": a question or a statement in string format,
"table_text": a table in list format containing lists of rows,
"answer": a list containing answer(s).}
You can find examples in the folder datasets_examples
.
code/tqa.py
: main script for running experiments.
code/agent.py
: script containing classes and functions for controlling agent behaviours.
code/llm.py
: script for LLMs calling.
code/tot.py
: script containing functions and prompts for using LLM to select best actions.
code/utils.py
: script containing helpful functions for running experiments.
code/prompts_table.py
: prompts used in our experiments.
code/fewshots_table.py
: few shot demostrations used in our experiments.
- In the
agent.py
, add information forload_gpt_azure
and comment out line 73. - run the following command.
python tqa.py --plan_model_name gpt-35-turbo \ --code_model_name gpt-35-turbo \ --dataset_path ../datasets_examples/tat.jsonl \ --task tat
- Set up the coding agent with SGLang. See details.
python -m sglang.launch_server --model-path path_to_the_coding_model --port port_number
- run the command in the step 2 above and specify port number
--code_endpoint port_number
- We use evaluation scripts from WTQ dataset to measure Exact Match Accuracy for WTQ, CRT and SciTab.
- We use the official evaluation scripts from TAT to evaluate models' performances on the TAT dataset.
@misc{zhou2025efficientmultiagentcollaborationtool,
title={Efficient Multi-Agent Collaboration with Tool Use for Online Planning in Complex Table Question Answering},
author={Wei Zhou and Mohsen Mesgar and Annemarie Friedrich and Heike Adel},
year={2025},
eprint={2412.20145},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2412.20145},
}