Skip to content

boschresearch/MACT

Repository files navigation

Environment

conda create --name mact python=3.10 -y
conda activate mact
pip install -r requirements.txt

Data

We support the following datasets:

{"statement": a question or a statement in string format,
 "table_text": a table in list format containing lists of rows,
 "answer": a list containing answer(s).}

You can find examples in the folder datasets_examples.

Code Structure

code/tqa.py: main script for running experiments.

code/agent.py: script containing classes and functions for controlling agent behaviours.

code/llm.py: script for LLMs calling.

code/tot.py: script containing functions and prompts for using LLM to select best actions.

code/utils.py: script containing helpful functions for running experiments.

code/prompts_table.py: prompts used in our experiments.

code/fewshots_table.py: few shot demostrations used in our experiments.

Usages

run with closed-sourced gpt models

  1. In the agent.py, add information for load_gpt_azure and comment out line 73.
  2. run the following command.
    python tqa.py --plan_model_name  gpt-35-turbo \
    --code_model_name  gpt-35-turbo  \
    --dataset_path  ../datasets_examples/tat.jsonl \
    --task  tat
    

run with open-source models

  1. Set up the coding agent with SGLang. See details.
    python -m sglang.launch_server --model-path  path_to_the_coding_model --port  port_number
    
  2. run the command in the step 2 above and specify port number --code_endpoint port_number

Evaluations

  • We use evaluation scripts from WTQ dataset to measure Exact Match Accuracy for WTQ, CRT and SciTab.
  • We use the official evaluation scripts from TAT to evaluate models' performances on the TAT dataset.

Cite

@misc{zhou2025efficientmultiagentcollaborationtool,
      title={Efficient Multi-Agent Collaboration with Tool Use for Online Planning in Complex Table Question Answering},
      author={Wei Zhou and Mohsen Mesgar and Annemarie Friedrich and Heike Adel},
      year={2025},
      eprint={2412.20145},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2412.20145},
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages