Node.js client library to use the Watson Developer Cloud services, a collection of APIs that use cognitive computing to solve complex problems.
Table of Contents
$ npm install watson-developer-cloud --save
The examples below assume that you already have service credentials. If not, you will have to create a service in Bluemix.
If you are running your application in Bluemix, you don't need to specify the
credentials; the library will get them for you by looking at the VCAP_SERVICES
environment variable.
Credentials are checked for in the following order:
-
Hard-coded or programatic credentials passed to the service constructor
-
SERVICE_NAME_USERNAME
andSERVICE_NAME_PASSWORD
environment properties (orSERVICE_NAME_API_KEY
when appropriate) and, optionally,SERVICE_NAME_URL
-
Bluemix-supplied credentials (via the
VCAP_SERVICES
JSON-encoded environment property)
See the examples/
folder for Browserify and Webpack client-side SDK examples (with server-side generation of auth tokens.)
Note: not all services currently support CORS, and therefore not all services can be used client-side. Of those that do, most require an auth token to be generated server-side via the Authorization Service.
By default, all requests are logged. This can be disabled of by setting the X-Watson-Learning-Opt-Out
header when creating the service instance:
var myInstance = new watson.WhateverServiceV1({
/* username, password, version, etc... */
headers: {
"X-Watson-Learning-Opt-Out": true
}
});
You can find links to the documentation at https://www.ibm.com/watson/developercloud/doc/index.html. Find the service that you're interested in, click API reference, and then select the Node tab.
There are also auto-generated JSDocs available at http://watson-developer-cloud.github.io/node-sdk/master/
You will need the username
and password
(api_key
for AlchemyAPI) credentials for each service. Service credentials are different from your Bluemix account username and password.
To get your service credentials, follow these steps:
- Log in to Bluemix at https://bluemix.net.
- Create an instance of the service:
- In the Bluemix Catalog, select the service you want to use.
- Type a unique name for the service instance in the Service name field. For example, type
my-service-name
. Leave the default values for the other options. - Click Create.
- From the service dashboard, click Service credentials.
- Click View credentials under Actions.
- Copy
username
andpassword
(orapi_key
for Visual Recognition).
If you are having difficulties using the APIs or have a question about the Watson services, please ask a question at dW Answers or Stack Overflow.
The examples folder has basic and advanced examples.
The Watson Developer Cloud offers a variety of services for building cognitive apps.
The Authorization service can generate auth tokens for situations where providing the service username/password is undesirable.
Tokens are valid for 1 hour and may be sent using the X-Watson-Authorization-Token
header or the watson-token
query param.
Note that the token is supplied URL-encoded, and will not be accepted if it is double-encoded in a querystring.
var watson = require('watson-developer-cloud');
var authorization = new watson.AuthorizationV1({
username: '<Text to Speech username>',
password: '<Text to Speech password>',
url: watson.TextToSpeechV1.URL
});
authorization.getToken(function (err, token) {
if (!token) {
console.log('error:', err);
} else {
// Use your token here
}
});
Use the Conversation service to determine the intent of a message.
Note: you must first create a workspace via Bluemix. See the documentation for details.
var ConversationV1 = require('watson-developer-cloud/conversation/v1');
var conversation = new ConversationV1({
username: '<username>',
password: '<password>',
version_date: ConversationV1.VERSION_DATE_2017_05_26
});
conversation.message(
{
input: { text: "What's the weather?" },
workspace_id: '<workspace id>'
},
function(err, response) {
if (err) {
console.error(err);
} else {
console.log(JSON.stringify(response, null, 2));
}
}
);
The Dialog service was deprecated on August 15, 2016, existing instances of the service will continue to function until August 9, 2017. Users of the Dialog service should migrate their applications to use the Conversation service. See the migration documentation to learn how to migrate your dialogs to the Conversation service.
Use the Discovery Service to search and analyze structured and unstructured data.
var DiscoveryV1 = require('watson-developer-cloud/discovery/v1');
var discovery = new DiscoveryV1({
username: '<username>',
password: '<password>',
version_date: DiscoveryV1.VERSION_DATE_2017_09_01
});
discovery.query(
{
environment_id: '<environment_id>',
collection_id: '<collection_id>',
query: 'my_query'
},
function(err, response) {
if (err) {
console.error(err);
} else {
console.log(JSON.stringify(response, null, 2));
}
}
);
Translate text from one language to another or idenfity a language using the Language Translator service.
var LanguageTranslatorV2 = require('watson-developer-cloud/language-translator/v2');
var language_translator = new LanguageTranslatorV2({
username: '<username>',
password: '<password>',
url: 'https://gateway.watsonplatform.net/language-translator/api/'
});
language_translator.translate(
{
text: 'A sentence must have a verb',
source: 'en',
target: 'es'
},
function(err, translation) {
if (err) {
console.log('error:', err);
} else {
console.log(JSON.stringify(translation, null, 2));
}
);
language_translator.identify(
{
text:
'The language translator service takes text input and identifies the language used.'
},
function(err, language) {
if (err) {
console.log('error:', err);
} else {
console.log(JSON.stringify(language, null, 2));
}
}
);
Use Natural Language Classifier service to create a classifier instance by providing a set of representative strings and a set of one or more correct classes for each as training. Then use the trained classifier to classify your new question for best matching answers or to retrieve next actions for your application.
var NaturalLanguageClassifierV1 = require('watson-developer-cloud/natural-language-classifier/v1');
var natural_language_classifier = new NaturalLanguageClassifierV1({
username: '<username>',
password: '<password>'
});
natural_language_classifier.classify(
{
text: 'Is it sunny?',
classifier_id: '<classifier-id>'
},
function(err, response) {
if (err) {
console.log('error:', err);
} else {
console.log(JSON.stringify(response, null, 2));
}
}
);
See this example to learn how to create a classifier.
Use Natural Language Understanding is a collection of natural language processing APIs that help you understand sentiment, keywords, entities, high-level concepts and more.
var fs = require('fs');
var NaturalLanguageUnderstandingV1 = require('watson-developer-cloud/natural-language-understanding/v1.js');
var nlu = new NaturalLanguageUnderstandingV1({
username: '<username>',
password: '<password>',
version_date: NaturalLanguageUnderstandingV1.VERSION_DATE_2017_02_27
});
nlu.analyze(
{
html: file_data, // Buffer or String
features: {
concepts: {},
keywords: {}
}
},
function(err, response) {
if (err) {
console.log('error:', err);
} else {
console.log(JSON.stringify(response, null, 2));
}
}
);
Analyze text in English and get a personality profile by using the Personality Insights service.
var PersonalityInsightsV3 = require('watson-developer-cloud/personality-insights/v3');
var personality_insights = new PersonalityInsightsV3({
username: '<username>',
password: '<password>',
version_date: '2016-10-19'
});
personality_insights.profile(
{
content: 'Enter more than 100 unique words here...',
content_type: 'text/plain',
consumption_preferences: true
},
function(err, response) {
if (err) {
console.log('error:', err);
} else {
console.log(JSON.stringify(response, null, 2));
}
}
);
Use the Speech to Text service to recognize the text from a .wav file.
var SpeechToTextV1 = require('watson-developer-cloud/speech-to-text/v1');
var fs = require('fs');
var speech_to_text = new SpeechToTextV1({
username: '<username>',
password: '<password>'
});
var params = {
// From file
audio: fs.createReadStream('./resources/speech.wav'),
content_type: 'audio/l16; rate=44100'
};
speech_to_text.recognize(params, function(err, res) {
if (err)
console.log(err);
else
console.log(JSON.stringify(res, null, 2));
});
// or streaming
fs.createReadStream('./resources/speech.wav')
.pipe(speech_to_text.createRecognizeStream({ content_type: 'audio/l16; rate=44100' }))
.pipe(fs.createWriteStream('./transcription.txt'));
Use the Text to Speech service to synthesize text into a .wav file.
var TextToSpeechV1 = require('watson-developer-cloud/text-to-speech/v1');
var fs = require('fs');
var text_to_speech = new TextToSpeechV1({
username: '<username>',
password: '<password>'
});
var params = {
text: 'Hello from IBM Watson',
voice: 'en-US_AllisonVoice', // Optional voice
accept: 'audio/wav'
};
// Synthesize speech, correct the wav header, then save to disk
// (wav header requires a file length, but this is unknown until after the header is already generated and sent)
textToSpeech
.synthesize(params, function(err, audio) {
if (err) {
console.log(err);
return;
}
textToSpeech.repairWavHeader(audio);
fs.writeFileSync('audio.wav', audio);
console.log('audio.wav written with a corrected wav header');
});
Use the Tone Analyzer service to analyze the emotion, writing and social tones of a text.
var ToneAnalyzerV3 = require('watson-developer-cloud/tone-analyzer/v3');
var tone_analyzer = new ToneAnalyzerV3({
username: '<username>',
password: '<password>',
version_date: '2016-05-19'
});
tone_analyzer.tone(
{
tone_input: 'Greetings from Watson Developer Cloud!',
content_type: 'text/plain'
},
function(err, tone) {
if (err) {
console.log(err);
} else {
console.log(JSON.stringify(tone, null, 2));
}
}
);
Use the Visual Recognition service to recognize the following picture.
var VisualRecognitionV3 = require('watson-developer-cloud/visual-recognition/v3');
var fs = require('fs');
var visual_recognition = new VisualRecognitionV3({
api_key: '<api_key>',
version_date: VisualRecognitionV3.VERSION_DATE_2016_05_20
});
var params = {
images_file: fs.createReadStream('./resources/car.png')
};
visual_recognition.classify(params, function(err, res) {
if (err) {
console.log(err);
} else {
console.log(JSON.stringify(res, null, 2));
}
});
Sample code for integrating Tone Analyzer and Conversation is provided in the examples directory.
By default, the library tries to use Basic Auth and will ask for api_key
or username
and password
and send an Authorization: Basic XXXXXXX
. You can avoid this by using:
use_unauthenticated
.
var watson = require('watson-developer-cloud');
var dialog = new watson.DialogV1({
use_unauthenticated: true
});
This library relies on the request
npm module writted by
request to call the Watson Services. To debug the apps, add
'request' to the NODE_DEBUG
environment variable:
$ NODE_DEBUG='request' node app.js
where app.js
is your Node.js file.
Running all the tests:
$ npm test
Running a specific test:
$ mocha -g '<test name>'
Find more open source projects on the IBM Github Page.
This library is licensed under Apache 2.0. Full license text is available in COPYING.
See CONTRIBUTING.