Skip to content

bultas/transformer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Transformer JS

Utility to transduce JS iterable data-structures

If you want to learn more you should start in Clojure documentation and learn basics about Transducers

Data (input)

Imagine that we have some data in different data-structures and we want to somehow transform it

const dataAsArray = [ 1, 2, 3 ];
const dataAsMap = new Map([ ['id1', 1], ['id2', 2], ['id3', 3] ]);
const dataAsSet = new Set([1, 2, 3]);

// ImmutableJS supported
const dataAsimmutableMap = Immutable.Map(obj);
const dataAsimmutableList = Immutable.List(dataAsArray);

transduce method

transduce method can help us with our "multi-data-structure" transformations

In core of this method we save state in Map data-structure, so default output will be Map

function transduce(input, reduce, transformator) {

    return [...input.entries()].reduce(
        transformator ? transformator(reduce) : reduce,
        new Map()
    );

}

Reduce

Now we have to tell to transduce method how we want to reduce data.

For now we use simple reduce method which save all transformed data to previous result

const saveReduce = (result, [key, value]) => {
    return result.set(key, value);
};

transdusaveRe(
    dataAsMap,
    saveReduce
);

Transformator

Now we can dive deeper and start transforming our data..

  1. We have to prepare transformation methods like map and filter
  2. We have to call the transfomation method with transformation logic to create final Transformator

Maping transformations

Lets start with map transformation method

const mapTransformation = (transformator) => (reducing) => (result, kv) => reducing(result, transformator(kv));

Then call this method with some transformation logic

const stringifyTransformator = mapTransformation(
    ([key, value]) => [key, `${value}`]
);

Finally we can use our Transformator to transform data.

transduce(
    dataAsMap,
    saveReduce,
    stringifyTransformator
);

Filter transformations

If we want another behavior like filtering data, we have to create another type of transformation method

const filterTransformation = (transformator) => (reducing) => (result, kv) => transformator(kv) ? reducing(result, kv) : result;

Then use it same way how we used map transformation method. Call it with logic to create Transformator

const filterEvenTransformator = filterTransformation(
    ([key, value]) => (value % 2) === 0
);

Finally you can filter your data

transduce(
    dataAsMap,
    saveReduce,
    filterEvenTransformator
);

Transformators composition

Both Transformators have same arguments so they can be easily composable.

const filterAndMapTransformator = R.compose(
    filterEvenTransformator,
    stringifyTransformator
)

transduce(
    dataAsMap,
    saveReduce,
    filterAndMapTransformator
);

Multi Data-structures transformations

You can put any Iterable data-structure as input and apply same transformations

transduce(
    dataAsMap,
    saveReduce,
    filterAndMapTransformator
);

Have same results as

transduce(
    dataAsSet,
    saveReduce,
    filterAndMapTransformator
);

Or

transduce(
    dataAsArray,
    saveReduce,
    filterAndMapTransformator
);

Converting output value

Sometime we just don't want get Map as output data-structure (default). So you can solve it by using covertors.

Convert is just simple function which get output and convert it to desired data-structure.

For example if you want to work with Array on the input as output, you have to use convertor

function mapToArrayConvertor(map) {
    return Array.from(map.values());
}

mapToArrayConvertor(
    transduce(
        dataAsArray,
        saveReduce,
        filterAndMapTransformator
    )
)

But you can go further and use Function Decorator (type of HOC) to create transduce with desired data-structure ouput

function createTransduceWithConvert(transducer, convertor) {
    return (...args) => {
        const data = transducer(...args);
        return convertor(data);
    }
}

For example create transduce version which return Array data-structure

const transduceToArray = createTransduceWithConvert(
    mapToArrayConvertor
);

Then you can use it as same way how you used original transduce method

transduceToArray(
    dataAsArray,
    saveReduce,
    filterAndMapTransformator
);

Immutability

Every original input data will not be modified in any way.

Advanced reducing

You can customize reduce behavior with custom Reduce function passed to transduce

Example: Array-style reduce helper to reduce value*

const reduceValuesReduce = (reduce, init) => (result, [key, value]) => {
    const x = reduce(result.get(0) || init, value);
    return result.set(0, x)
};

transduce(
    dataAsArray,
    reduceValuesReduce(
        (result, value) => result + value,
        0
    )
);

Helpers

Trans Helper

function trans(input, transformation) {
    return transduce(
        input,
        saveReduce,
        transformation
    );
}

trans(
    dataAsArray,
    filterAndMapTransformator
)

Reduce Helper

function reduce(input, reduce, init) {
    return transduce(
        input,
        reduceValuesReduce(
            reduce,
            init
        )
    )
}

reduce(
    dataAsArray,
    (result, value) => (result + value) * 10,
    0
)

About

Transform and reduce JS iterable data types

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published