Skip to content

Commit

Permalink
Improve MNIST example
Browse files Browse the repository at this point in the history
  • Loading branch information
apaszke committed Jan 17, 2017
1 parent 1d84800 commit 32c7386
Show file tree
Hide file tree
Showing 5 changed files with 134 additions and 248 deletions.
3 changes: 1 addition & 2 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -1,4 +1,3 @@
mnist/data
dcgan/data
VAE/data
data
*.pyc
91 changes: 0 additions & 91 deletions mnist/data.py

This file was deleted.

172 changes: 80 additions & 92 deletions mnist/main.py
Original file line number Diff line number Diff line change
@@ -1,126 +1,114 @@
from __future__ import print_function
import os, argparse
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable

cuda = torch.cuda.is_available()

# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batchSize', type=int, default=64, metavar='input batch size')
parser.add_argument('--testBatchSize', type=int, default=1000, metavar='input batch size for testing')
parser.add_argument('--trainSize', type=int, default=1000, metavar='Train dataset size (max=60000). Default: 1000')
parser.add_argument('--nEpochs', type=int, default=2, metavar='number of epochs to train')
parser.add_argument('--lr', type=float, default=0.01, metavar='Learning Rate. Default=0.01')
parser.add_argument('--momentum', type=float, default=0.5, metavar='Default=0.5')
parser.add_argument('--seed', type=int, default=123, metavar='Random Seed to use. Default=123')
opt = parser.parse_args()
print(opt)

torch.manual_seed(opt.seed)
if cuda == True:
torch.cuda.manual_seed(opt.seed)

if not os.path.exists('data/processed/training.pt'):
import data
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 2)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()

torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)


kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)

# Data
print('===> Loading data')
with open('data/processed/training.pt', 'rb') as f:
training_set = torch.load(f)
with open('data/processed/test.pt', 'rb') as f:
test_set = torch.load(f)

training_data = training_set[0].view(-1, 1, 28, 28).div(255)
training_data = training_data[:opt.trainSize]
training_labels = training_set[1]
test_data = test_set[0].view(-1, 1, 28, 28).div(255)
test_labels = test_set[1]

del training_set
del test_set

print('===> Building model')
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, 5)
self.pool1 = nn.MaxPool2d(2,2)
self.conv2 = nn.Conv2d(10, 20, 5)
self.pool2 = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
self.relu = nn.ReLU()
self.softmax = nn.LogSoftmax()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)

def forward(self, x):
x = self.relu(self.pool1(self.conv1(x)))
x = self.relu(self.pool2(self.conv2(x)))
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
return self.softmax(x)
x = F.relu(self.fc1(x))
x = F.dropout(x)
x = F.relu(self.fc2(x))
return F.log_softmax(x)

model = Net()
if cuda == True:
if args.cuda:
model.cuda()

criterion = nn.NLLLoss()
optimizer = optim.SGD(model.parameters(), lr=opt.lr, momentum=opt.momentum)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)

def train(epoch):
# create buffers for mini-batch
batch_data = torch.FloatTensor(opt.batchSize, 1, 28, 28)
batch_targets = torch.LongTensor(opt.batchSize)
if cuda:
batch_data, batch_targets = batch_data.cuda(), batch_targets.cuda()

# create autograd Variables over these buffers
batch_data, batch_targets = Variable(batch_data), Variable(batch_targets)

for i in range(0, training_data.size(0)-opt.batchSize+1, opt.batchSize):
start, end = i, i+opt.batchSize
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
batch_data.data[:] = training_data[start:end]
batch_targets.data[:] = training_labels[start:end]
output = model(batch_data)
loss = criterion(output, batch_targets)
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
loss = loss.data[0]
optimizer.step()
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.4f}'
.format(epoch, end, opt.trainSize, float(end)/opt.trainSize*100, loss))
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data[0]))

def test(epoch):
# create buffers for mini-batch
batch_data = torch.FloatTensor(opt.testBatchSize, 1, 28, 28)
batch_targets = torch.LongTensor(opt.testBatchSize)
if cuda:
batch_data, batch_targets = batch_data.cuda(), batch_targets.cuda()

# create autograd Variables over these buffers
batch_data = Variable(batch_data, volatile=True)
batch_targets = Variable(batch_targets, volatile=True)

model.eval()
test_loss = 0
correct = 0

for i in range(0, test_data.size(0), opt.testBatchSize):
batch_data.data[:] = test_data[i:i+opt.testBatchSize]
batch_targets.data[:] = test_labels[i:i+opt.testBatchSize]
output = model(batch_data)
test_loss += criterion(output, batch_targets)
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
test_loss += F.nll_loss(output, target).data[0]
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.long().eq(batch_targets.data.long()).cpu().sum()
correct += pred.eq(target.data).cpu().sum()

test_loss = test_loss
test_loss /= len(test_loader) # loss function already averages over batch size
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))

test_loss = test_loss.data[0]
test_loss /= (test_data.size(0) / opt.testBatchSize) # criterion averages over batch size
print('\nTest Set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, test_data.size(0),
float(correct)/test_data.size(0)*100))

for epoch in range(1, opt.nEpochs+1):
for epoch in range(1, args.epochs + 1):
train(epoch)
test(epoch)
3 changes: 1 addition & 2 deletions mnist/requirements.txt
Original file line number Diff line number Diff line change
@@ -1,3 +1,2 @@
torch
six
tqdm
torchvision
Loading

0 comments on commit 32c7386

Please sign in to comment.