Skip to content

casezhao/ChatGLM-6B-finetuning

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Fine Tuning: ChatGLM-6b

This project focuses on the fine tuning of ChatGLM-6B-int4 model in different ways (freeze\embeding\PT\LoRA), and comparing the effect of different fine tuning methods on the large model, mainly for information extraction task, generation task, classification task, etc.

And if you fine tuning other version of ChatGLM-6B(like pf16), you need to upate the version corresponding to

configuration_chatglm.py
quantization.py
modeling_chatglm.py
tokenization_chatglm.py
test_modeling_chatglm.py
tokenization_chatglm.py

in https://huggingface.co/THUDM/chatglm-6b

Fine Tuning

Freeze Tuning

The parameters of the original model are frozen. For example, only the layer behind the model can be trained.

The parameters of the final training are as follows:
trainable params: 81920 || all params: 3.356B || trainable%: 0.0024

be train layer: transformer.layers.23.input_layernorm.weight
be train layer: transformer.layers.23.input_layernorm.bias
be train layer: transformer.layers.23.post_attention_layernorm.weight
be train layer: transformer.layers.23.post_attention_layernorm.bias
be train layer: transformer.layers.24.input_layernorm.weight
be train layer: transformer.layers.24.input_layernorm.bias
be train layer: transformer.layers.24.post_attention_layernorm.weight
be train layer: transformer.layers.24.post_attention_layernorm.bias
be train layer: transformer.layers.25.input_layernorm.weight
be train layer: transformer.layers.25.input_layernorm.bias
be train layer: transformer.layers.25.post_attention_layernorm.weight
be train layer: transformer.layers.25.post_attention_layernorm.bias
be train layer: transformer.layers.26.input_layernorm.weight
be train layer: transformer.layers.26.input_layernorm.bias
be train layer: transformer.layers.26.post_attention_layernorm.weight
be train layer: transformer.layers.26.post_attention_layernorm.bias
be train layer: transformer.layers.27.input_layernorm.weight
be train layer: transformer.layers.27.input_layernorm.bias
be train layer: transformer.layers.27.post_attention_layernorm.weight
be train layer: transformer.layers.27.post_attention_layernorm.bias

Embedding Tuning

Freeze the model entirely and train only the ebedding part of the model as one of the soft prompt ways.

The parameters of the final training are as follows:
trainable params: 0.53B || all params: 3.356B || trainable%: 15.9

be train layer: transformer.word_embeddings.weight

P Tuning

P Tuning P-tuning-V2 A soft prompt improvement,P-tuning-V2 is not only for the embedding layer, but continuous tokens are inserted into each layer, increasing the amount of change and interaction.

The parameters of the final training are as follows:
trainable params: 0.957B || all params: 4.312B || trainable%: 22.18

transformer.prefix_encoder.embedding.weight
transformer.prefix_encoder.trans.0.weight
transformer.prefix_encoder.trans.0.bias
transformer.prefix_encoder.trans.2.weight
transformer.prefix_encoder.trans.2.bias

LoRA Tuning

LoRA allows us to train some dense layers in a neural network indirectly by optimizing rank decomposition matrices of the dense layers’ change during adaptation instead, while keeping the pre-trained weights frozen.
\

experiment

Fine tuning the model in Google Colab pro with A100-40G,so you need to pip install somethings in Colab:

!pip install --upgrade tensorboard
!pip install --upgrade protobuf
!pip install transformers
!pip install sentencepiece
!pip install deepspeed
!pip install mpi4py
!pip install cpm_kernels
!pip install icetk
!pip install peft
!pip install tensorboard
!pip install tqdm

Loss

Freeze loss

embedding loss

PT loss

About

ChatGLM-6B-finetuning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.3%
  • C 1.7%