Skip to content

Commit

Permalink
New function add_cyclic that allows adding a cyclic point with n-dime…
Browse files Browse the repository at this point in the history
…nsional longitudes and latitudes. It checks if a cyclic point is already present using the function has_cyclic.
  • Loading branch information
mcuntz committed Oct 20, 2021
1 parent 0baa5e0 commit 3395fd2
Show file tree
Hide file tree
Showing 4 changed files with 756 additions and 5 deletions.
1 change: 1 addition & 0 deletions docs/source/contributors.rst
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,7 @@ the package wouldn't be as rich or diverse as it is today:
* Kacper Makuch
* Stephane Raynaud
* John Krasting
* Matthias Cuntz

Thank you!

Expand Down
91 changes: 91 additions & 0 deletions examples/scalar_data/wrapping_global.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
"""
Adding a cyclic point to help with wrapping of global data
==========================================================
Cartopy represents data in Cartesian projected coordinates, meaning that 350
degrees longitude, is not just 10 degrees away from 0 degrees as it is when
represented in spherical coordinates. This means that the plotting methods will
not plot data between the last and the first longitude.
To help with this, the data and longitude/latitude coordinate arrays can be
expanded with a cyclic point to close this gap. The routine `add_cyclic`
repeats the last data column. It can also add the first longitude plus the
cyclic keyword (defaults to 360) to the end of the longitude array so that the
data values at the ending longitudes will be closed to the wrap point.
"""
import numpy as np
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.util as cutil


def main():

# data with longitude centers from 0 to 360
nlon = 24
nlat = 12
# 7.5, 22.5, ..., 337.5, 352.5
dlon = 360//nlon
lon = np.linspace(dlon/2., 360.-dlon/2., nlon)
# -82.5, -67.5, ..., 67.5, 82.5
dlat = 180//nlat
lat = np.linspace(-90.+dlat/2., 90.-dlat/2., nlat)
# 0, 1, ..., 10, 11, 11, 10, ..., 1, 0
data = np.concatenate((np.arange(nlon // 2),
np.arange(nlon // 2)[::-1]))
data = np.tile(data, nlat).reshape((nlat, nlon))

fig = plt.figure()

# plot with central longitude 180
ax1 = fig.add_subplot(2, 2, 1,
projection=ccrs.Robinson(central_longitude=180))
ax1.set_title("1d longitudes, central longitude=180",
fontsize='small')
ax1.set_global()
ax1.contourf(lon, lat, data,
transform=ccrs.PlateCarree(), cmap='RdBu')
ax1.coastlines()

# plot with central longitude 0
ax2 = fig.add_subplot(2, 2, 2,
projection=ccrs.Robinson(central_longitude=0))
ax2.set_title("1d longitudes, central longitude=0",
fontsize='small')
ax2.set_global()
ax2.contourf(lon, lat, data,
transform=ccrs.PlateCarree(), cmap='RdBu')
ax2.coastlines()

# add cyclic points to data and longitudes
# latitudes are unchanged in 1-dimension
cdata, clon, clat = cutil.add_cyclic(data, lon, lat)
ax3 = fig.add_subplot(2, 2, 3,
projection=ccrs.Robinson(central_longitude=180))
ax3.set_title("Cyclic 1d longitudes, central longitude=180",
fontsize='small')
ax3.set_global()
ax3.contourf(clon, clat, cdata,
transform=ccrs.PlateCarree(), cmap='RdBu')
ax3.coastlines()

# add_cyclic also works with 2-dimensional data
# Cyclic points are added to data, longitudes, and latitudes to
# ensure the dimensions of the returned arrays are all the same shape.
lon2d, lat2d = np.meshgrid(lon, lat)
cdata, clon2d, clat2d = cutil.add_cyclic(data, lon2d, lat2d)
ax4 = fig.add_subplot(2, 2, 4,
projection=ccrs.Robinson(central_longitude=0))
ax4.set_title("Cyclic 2d longitudes, central longitude=0",
fontsize='small')
ax4.set_global()
ax4.contourf(clon2d, clat2d, cdata,
transform=ccrs.PlateCarree(), cmap='RdBu')
ax4.coastlines()

plt.show()


if __name__ == '__main__':
main()
Loading

0 comments on commit 3395fd2

Please sign in to comment.