- ⭐ - Arxiv (Coming Soon)
- ⭐ - DATESET: 👉 LOL 👉 FIVEK 👉 LSRW
- ⭐ - Pretrained Models:
Mini_weight.pkl
Max_weight.pkl
MSDC-NET aims to become the deep learning model for low-light image enhancement with the smallest number of parameters and minimal floating-point operations in recent years. Both the model and its variants have parameter counts of ≤ 240 bytes. Experimental validation demonstrates that MSDC-NET achieves state-of-the-art performance compared to existing algorithms across multiple metrics, including SSIM, PSNR, parameters, and FLOPs
- Release project page
- Release max / min model weights on Github
- Release paper link
- Release inference code
- Release training code
- Release evaluation code
- Clone MSDC-NET.
git clone --recursive https://github.com/chenyuhan1997/MSDC-NET
cd MSDC-NET
# git submodule update --init --recursive
- Create the environment, here we show an example using conda.
conda create -n MSDC-NET python=3.11
conda activate MSDC-NET
conda install pytorch torchvision pytorch-cuda=12.1 -c pytorch -c nvidia # use the correct version of cuda for your system
pip install opencv, kornia, pytorch_msssim, matplotlib, PIL, scikit-image, scipy, einops, math, typing
- Train
python train.py
- Test
python test.py