Skip to content

Commit

Permalink
Bump version to v2.27.0 (open-mmlab#9531)
Browse files Browse the repository at this point in the history
* Add changelog of v2.27.0

* update rc5

* fix

* fix

* sync
  • Loading branch information
RangiLyu authored Jan 3, 2023
1 parent c02c63b commit dcac7dd
Show file tree
Hide file tree
Showing 9 changed files with 78 additions and 19 deletions.
31 changes: 23 additions & 8 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -77,23 +77,38 @@ Apart from MMDetection, we also released a library [mmcv](https://github.com/ope

### 💎 Stable version

**2.26.0** was released in 23/11/2022:
**2.27.0** was released in 26/12/2022:

- Support training on [NPU](docs/en/device/npu.md).
- Support receptive field search of CNN models([TPAMI 2022: RF-Next](http://mftp.mmcheng.net/Papers/22TPAMI-ActionSeg.pdf)).

Please refer to [changelog.md](docs/en/changelog.md) for details and release history.

For compatibility changes between different versions of MMDetection, please refer to [compatibility.md](docs/en/compatibility.md).

### 🌟 Preview of 3.x version

A brand new version of **MMDetection v3.0.0rc0** was released in 31/8/2022:
#### Highlight

- Unifies interfaces of all components based on [MMEngine](https://github.com/open-mmlab/mmengine).
- Faster training and testing speed with complete support of mixed precision training.
- Refactored and more flexible [architecture](https://mmdetection.readthedocs.io/en/v3.0.0rc0/overview.html).
- Provides more strong baselines and a general semi-supervised object detection framework. See [tutorial of semi-supervised detection](https://mmdetection.readthedocs.io/en/v3.0.0rc0/user_guides/semi_det.html).
- Allows any kind of single-stage model as an RPN in a two-stage model. See [tutorial](https://mmdetection.readthedocs.io/en/v3.0.0rc0/user_guides/single_stage_as_rpn.html).
We are excited to announce our latest work on real-time object recognition tasks, **RTMDet**, a family of fully convolutional single-stage detectors. RTMDet not only achieves the best parameter-accuracy trade-off on object detection from tiny to extra-large model sizes but also obtains new state-of-the-art performance on instance segmentation and rotated object detection tasks. Details can be found in the [technical report](https://arxiv.org/abs/2212.07784). Pre-trained models are [here](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/rtmdet).

[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/real-time-instance-segmentation-on-mscoco)](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco?p=rtmdet-an-empirical-study-of-designing-real)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-dota-1)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-dota-1?p=rtmdet-an-empirical-study-of-designing-real)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-hrsc2016)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-hrsc2016?p=rtmdet-an-empirical-study-of-designing-real)

| Task | Dataset | AP | FPS(TRT FP16 BS1 3090) |
| ------------------------ | ------- | ------------------------------------ | ---------------------- |
| Object Detection | COCO | 52.8 | 322 |
| Instance Segmentation | COCO | 44.6 | 188 |
| Rotated Object Detection | DOTA | 78.9(single-scale)/81.3(multi-scale) | 121 |

<div align=center>
<img src="https://user-images.githubusercontent.com/12907710/208044554-1e8de6b5-48d8-44e4-a7b5-75076c7ebb71.png"/>
</div>

A brand new version of **MMDetection v3.0.0rc5** was released in 26/12/2022:

- Support [RTMDet](https://arxiv.org/abs/2212.07784) instance segmentation models. The technical report of RTMDet is on [arxiv](https://arxiv.org/abs/2212.07784)
- Support SSHContextModule in paper [SSH: Single Stage Headless Face Detector](https://arxiv.org/abs/1708.03979)

Find more new features in [3.x branch](https://github.com/open-mmlab/mmdetection/tree/3.x). Issues and PRs are welcome!

Expand Down
30 changes: 23 additions & 7 deletions README_zh-CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -76,22 +76,38 @@ MMDetection 是一个基于 PyTorch 的目标检测开源工具箱。它是 [Ope

### 💎 稳定版本

最新的 **2.26.0** 版本已经在 2022.11.23 发布:
最新的 **2.27.0** 版本已经在 2022.12.26 发布:

- 支持在 [NPU](docs/en/device/npu.md) 上进行训练
- 支持 CNN 模型的感受野搜索 ([TPAMI 2022: RF-Next](http://mftp.mmcheng.net/Papers/22TPAMI-ActionSeg.pdf))

如果想了解更多版本更新细节和历史信息,请阅读[更新日志](docs/en/changelog.md)

如果想了解 MMDetection 不同版本之间的兼容性, 请参考[兼容性说明文档](docs/zh_cn/compatibility.md)

### 🌟 3.x 预览版本

全新的 **v3.0.0rc0** 版本已经在 2022.8.31 发布:
#### 亮点

- 基于 [MMEngine](https://github.com/open-mmlab/mmengine) 统一了各组件接口。
- 全面支持混合精度,训练测试速度更快。
- 提供了更强的基线模型,并支持了通用的半监督目标检测框架,详见[半监督目标检测教程](https://mmdetection.readthedocs.io/zh_CN/v3.0.0rc0/user_guides/semi_det.html)
- 支持使用任意单阶段检测器作为二阶段模型的 RPN,详见[教程](https://mmdetection.readthedocs.io/en/v3.0.0rc0/user_guides/single_stage_as_rpn.html)
我们很高兴向大家介绍我们在实时目标识别任务方面的最新成果 RTMDet,包含了一系列的全卷积单阶段检测模型。 RTMDet 不仅在从 tiny 到 extra-large 尺寸的目标检测模型上实现了最佳的参数量和精度的平衡,而且在实时实例分割和旋转目标检测任务上取得了最先进的成果。 更多细节请参阅[技术报告](https://arxiv.org/abs/2212.07784)。 预训练模型可以在[这里](https://github.com/open-mmlab/mmdetection/tree/3.x/configs/rtmdet)找到。

[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/real-time-instance-segmentation-on-mscoco)](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco?p=rtmdet-an-empirical-study-of-designing-real)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-dota-1)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-dota-1?p=rtmdet-an-empirical-study-of-designing-real)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/rtmdet-an-empirical-study-of-designing-real/object-detection-in-aerial-images-on-hrsc2016)](https://paperswithcode.com/sota/object-detection-in-aerial-images-on-hrsc2016?p=rtmdet-an-empirical-study-of-designing-real)

| Task | Dataset | AP | FPS(TRT FP16 BS1 3090) |
| ------------------------ | ------- | ------------------------------------ | ---------------------- |
| Object Detection | COCO | 52.8 | 322 |
| Instance Segmentation | COCO | 44.6 | 188 |
| Rotated Object Detection | DOTA | 78.9(single-scale)/81.3(multi-scale) | 121 |

<div align=center>
<img src="https://user-images.githubusercontent.com/12907710/208044554-1e8de6b5-48d8-44e4-a7b5-75076c7ebb71.png"/>
</div>

全新的 **v3.0.0rc5** 版本已经在 2022.12.26 发布:

- 支持了 [RTMDet](https://arxiv.org/abs/2212.07784) 的实例分割模型。RTMDet 的技术报告发布在了 [arxiv](https://arxiv.org/abs/2212.07784) 上。
- 支持了 [SSH: Single Stage Headless Face Detector](https://arxiv.org/abs/1708.03979) 论文中的 SSHContextModule

## 安装

Expand Down
2 changes: 1 addition & 1 deletion docker/serve/Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ ARG CUDNN="7"
FROM pytorch/pytorch:${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel

ARG MMCV="1.3.17"
ARG MMDET="2.26.0"
ARG MMDET="2.27.0"

ENV PYTHONUNBUFFERED TRUE

Expand Down
26 changes: 26 additions & 0 deletions docs/en/changelog.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,31 @@
## Changelog

### v2.27.0 (26/12/2022)

#### Highlights

- Support receptive field search of CNN models([TPAMI 2022: RF-Next](http://mftp.mmcheng.net/Papers/22TPAMI-ActionSeg.pdf)) (#8191)

#### Bug Fixes

- Fix deadlock issue related with MMDetWandbHook (#9476)

#### Improvements

- Add minimum GitHub token permissions for workflows (#8928)
- Delete compatible code for parrots in roi extractor (#9503)
- Deprecate np.bool Type Alias (#9498)

#### Documents

- Fix typo in docs/zh_cn/tutorials/config.md (#9416)
- Fix Faster RCNN FP16 config link in README (#9366)

#### Contributors

A total of 11 developers contributed to this release.
Thanks @gasvn, @lzyhha, @jbwang1997, @zachcoleman, @chenyuwang814, @MilkClouds, @Fizzez, @boahc077, @apatsekin, @zytx121, @DonggeunYu

### v2.26.0 (23/11/2022)

#### Highlights
Expand Down
1 change: 1 addition & 0 deletions docs/en/faq.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@ We list some common troubles faced by many users and their corresponding solutio
| MMDetection version | MMCV version |
| :-----------------: | :------------------------: |
| master | mmcv-full>=1.3.17, \<1.8.0 |
| 2.27.0 | mmcv-full>=1.3.17, \<1.8.0 |
| 2.26.0 | mmcv-full>=1.3.17, \<1.8.0 |
| 2.25.3 | mmcv-full>=1.3.17, \<1.7.0 |
| 2.25.2 | mmcv-full>=1.3.17, \<1.7.0 |
Expand Down
1 change: 1 addition & 0 deletions docs/zh_cn/get_started.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@ MMDetection 和 MMCV 版本兼容性如下所示,需要安装正确的 MMCV
| MMDetection 版本 | MMCV 版本 |
| :--------------: | :------------------------: |
| master | mmcv-full>=1.3.17, \<1.8.0 |
| 2.27.0 | mmcv-full>=1.3.17, \<1.8.0 |
| 2.26.0 | mmcv-full>=1.3.17, \<1.8.0 |
| 2.25.3 | mmcv-full>=1.3.17, \<1.7.0 |
| 2.25.2 | mmcv-full>=1.3.17, \<1.7.0 |
Expand Down
2 changes: 1 addition & 1 deletion mmdet/version.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# Copyright (c) OpenMMLab. All rights reserved.

__version__ = '2.26.0'
__version__ = '2.27.0'
short_version = __version__


Expand Down
2 changes: 1 addition & 1 deletion requirements/optional.txt
Original file line number Diff line number Diff line change
@@ -1,3 +1,3 @@
cityscapesscripts
imagecorruptions
sklearn
scikit-learn
2 changes: 1 addition & 1 deletion setup.cfg
Original file line number Diff line number Diff line change
Expand Up @@ -18,4 +18,4 @@ SPLIT_BEFORE_EXPRESSION_AFTER_OPENING_PAREN = true
[codespell]
skip = *.ipynb
quiet-level = 3
ignore-words-list = patten,nd,ty,mot,hist,formating,winn,gool,datas,wan,confids,TOOD,tood,ba,warmup,nam
ignore-words-list = patten,nd,ty,mot,hist,formating,winn,gool,datas,wan,confids,TOOD,tood,ba,warmup,nam,dota,DOTA

0 comments on commit dcac7dd

Please sign in to comment.