DiffusionTrack is the first work of diffusion model for multi-object tracking.
DiffusionTrack:Diffusion Model For Multi-Object Tracking
Run Luo, Zikai Song, Lintao Ma, Jinlin Wei
Method | MOTA | IDF1 | HOTA | AssA | DetA |
---|---|---|---|---|---|
TrackFormer | 74.1 | 68.0 | 57.3 | 54.1 | 60.9 |
MeMOT | 72.5 | 69.0 | 56.9 | 55.2 | / |
MOTR | 71.9 | 68.4 | 57.2 | 55.8 | / |
CenterTrack | 67.8 | 64.7 | 52.2 | 51.0 | 53.8 |
PermaTrack | 73.8 | 68.9 | 55.5 | 53.1 | 58.5 |
TransCenter | 73.2 | 62.2 | 54.5 | 49.7 | 60.1 |
GTR | 75.3 | 71.5 | 59.1 | 57.0 | 61.6 |
TubeTK | 63.0 | 58.6 | / | / | / |
DiffusionTrack | 77.9 | 73.8 | 60.8 | 58.8 | 63.2 |
Method | MOTA | IDF1 | HOTA | AssA | DetA |
---|---|---|---|---|---|
TrackFormer | 68.6 | 65.7 | 54.7 | 53.0 | 56.7 |
MeMOT | 63.7 | 66.1 | 54.1 | 55.0 | / |
TransCenter | 67.7 | 58.7 | / | / | / |
DiffusionTrack | 72.8 | 66.3 | 55.3 | 51.3 | 59.9 |
Method | MOTA | IDF1 | HOTA | AssA | DetA |
---|---|---|---|---|---|
TransTrack | 88.4 | 45.2 | 45.5 | 27.5 | 75.9 |
CenterTrack | 86.8 | 35.7 | 41.8 | 22.6 | 78.1 |
DiffusionTrack | 89.3 | 47.5 | 52.4 | 33.5 | 82.2 |
Step1. Install requirements for DiffusionTrack.
git clone https://github.com/RainBowLuoCS/DiffusionTrack.git
cd DiffusionTrack
pip3 install -r requirements.txt
python3 setup.py develop
Step2. Install pycocotools.
pip3 install cython; pip3 install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
Step3. Others
pip3 install cython_bbox
Step4. Install detectron2
git clone https://github.com/facebookresearch/detectron2.git
python -m pip install -e detectron2
Download MOT17, MOT20, CrowdHuman, Cityperson, ETHZ ,Dancetrack put them under <DiffusionTrack_HOME>/datasets in the following structure:
datasets
|——————mot
| └——————train
| └——————test
└——————crowdhuman
| └——————Crowdhuman_train
| └——————Crowdhuman_val
| └——————annotation_train.odgt
| └——————annotation_val.odgt
└——————MOT20
| └——————train
| └——————test
└——————dancetrack
| └——————train
| └——————test
└——————Cityscapes
| └——————images
| └——————labels_with_ids
└——————ETHZ
└——————eth01
└——————...
└——————eth07
Then, you need to turn the datasets to COCO format and mix different training data:
cd <DiffusionTrack_HOME>
python3 tools/convert_mot17_to_coco.py
python3 tools/convert_dancetrack_to_coco.py
python3 tools/convert_mot20_to_coco.py
python3 tools/convert_crowdhuman_to_coco.py
python3 tools/convert_cityperson_to_coco.py
python3 tools/convert_ethz_to_coco.py
Before mixing different datasets, you need to follow the operations in mix_xxx.py to create a data folder and link. Finally, you can mix the training data:
cd <DiffusionTrack_HOME>
python3 tools/mix_data_ablation.py
python3 tools/mix_data_test_mot17.py
python3 tools/mix_data_test_mot20.py
You can download our model weight from our model zoo. We provide a 32-bit precision model, you can load it and then use half-precision fine-tuning to get a 16-bit precision model weight, so that you will get the above inference speed.
The pretrained YOLOX model can be downloaded from their model zoo. After downloading the pretrained models, you can put them under <DiffusionTrack_HOME>/pretrained.
- Train ablation model (MOT17 half train and CrowdHuman)
cd <DiffusionTrack_HOME>
python3 tools/train.py -f exps/example/mot/yolox_x_diffusion_det_mot17_ablation.py -d 8 -b 16 -o -c pretrained/bytetrack_ablation.pth.tar
python3 tools/train.py -f exps/example/mot/yolox_x_diffusion_track_mot17_ablation.py -d 8 -b 16 -o -c pretrained/diffusiontrack_ablation_det.pth.tar
- Train MOT17 test model (MOT17 train, CrowdHuman, Cityperson and ETHZ)
cd <DiffusionTrack_HOME>
python3 tools/train.py -f exps/example/mot/yolox_x_diffusion_det_mot17.py -d 8 -b 16 -o -c pretrained/bytetrack_x_mot17.pth.tar
python3 tools/train.py -f exps/example/mot/yolox_x_diffusion_track_mot17.py -d 8 -b 16 -o -c pretrained/diffusiontrack_mot17_det.pth.tar
- Train MOT20 test model (MOT20 train, CrowdHuman)
cd <DiffusionTrack_HOME>
python3 tools/train.py -f exps/example/mot/yolox_x_diffusion_det_mot20.py -d 8 -b 16 -o -c pretrained/bytetrack_x_mot20.pth.tar
python3 tools/train.py -f exps/example/mot/yolox_x_diffusion_track_mot20.py -d 8 -b 16 -o -c pretrained/diffusiontrack_mot20_det.pth.tar
Train Dancetrack test model (Dancetrack)
cd <DiffusionTrack_HOME>
python3 tools/train.py -f exps/example/mot/yolox_x_diffusion_det_dancetrack.py -d 8 -b 16 -o -c pretrained/bytetrack_x_mot17.pth.tar
python3 tools/train.py -f exps/example/mot/yolox_x_diffusion_track_dancetrack.py -d 8 -b 16 -o -c pretrained/diffusiontrack_dancetrack_det.pth.tar
- Evaluation on MOT17 half val
cd <DiffusionTrack_HOME>
python3 tools/track.py -f exps/example/mot/yolox_x_diffusion_track_mot17_ablation.py -c pretrained/diffusiontrack_ablation_track.pth.tar -b 1 -d 1 --fuse
- Test on MOT17
cd <DiffusionTrack_HOME>
python3 tools/track.py -f exps/example/mot/yolox_x_diffusion_track_mot17.py -c pretrained/diffusiontrack_mot17_track.pth.tar -b 1 -d 1 --fuse
- Test on MOT20
cd <DiffusionTrack_HOME>
python3 tools/track.py -f exps/example/mot/yolox_x_diffusion_track_mot20.py -c pretrained/diffusiontrack_mot20_track.pth.tar -b 1 -d 1 --fuse
- Test on Dancetrack
cd <DiffusionTrack_HOME>
python3 tools/track.py -f exps/example/mot/yolox_x_diffusion_track_dancetrack.py -c pretrained/diffusiontrack_dancetrack_track.pth.tar -b 1 -d 1 --fuse
- (2024.02) DiffMOT is accepted by CVPR2024, demonstrating the potential of the diffusion-based tracker and once again validating our visionary insights, congratulations!
- (2023.12) Our paper is accepted by AAAI2024!
- (2023.08) Code is released!
This project is under the CC-BY-NC 4.0 license. See LICENSE for details.
If you use DiffusionTrack in your research or wish to refer to the baseline results published here, please use the following BibTeX entry.
@article{luo2023diffusiontrack,
title={DiffusionTrack: Diffusion Model For Multi-Object Tracking},
author={Luo, Run and Song, Zikai and Ma, Lintao and Wei, Jinlin and Yang, Wei and Yang, Min},
journal={arXiv preprint arXiv:2308.09905},
year={2023}
}
A large part of the code is borrowed from ByteTrack and DiffusionDet thanks for their wonderful works.