Skip to content

Various CNN models including Deep Residual Networks (ResNet) for CIFAR10 with Chainer (http://chainer.org)

Notifications You must be signed in to change notification settings

chulaihunde/chainer-cifar10

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

73 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

chainer-cifar10

Requirement

  • Chainer v1.5.0.2
  • scikit-image 0.11.3
  • scipy 0.16.0
  • numpy 1.10. 1

Download & Construct Cifar10 Dataset

$ bash download.sh

Start Training

$ nohup python train.py &

Draw Loss Curve

$ python draw_loss.py --logfile log.txt --outfile log.jpg

Deep Residual Network (ResNet-110)

$ python dataset.py --whitening 0
$ python train.py --model models/ResNet.py --lr 0.1 --gpu 0

The test accuracy after 15 epochs is 0.9406 (error (%): 5.94). The test accuracy reported in the MSR paper (Deep Residual Learning for Image Recognition) is 0.9357 (error (%): 6.43) (see Table 6).

Resulting loss curve

About

Various CNN models including Deep Residual Networks (ResNet) for CIFAR10 with Chainer (http://chainer.org)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.3%
  • Shell 0.7%