Skip to content
forked from filodb/FiloDB

Distributed. Columnar. Versioned. Streaming. SQL.

License

Notifications You must be signed in to change notification settings

cigolabs/FiloDB

 
 

Repository files navigation

FiloDB

Join the chat at https://gitter.im/velvia/FiloDB High-performance distributed analytical database + Spark SQL queries + built for streaming.

filodb-announce google group

    _______ __      ____  ____ 
   / ____(_) /___  / __ \/ __ )
  / /_  / / / __ \/ / / / __  |
 / __/ / / / /_/ / /_/ / /_/ / 
/_/   /_/_/\____/_____/_____/  

Columnar, versioned layers of data wrapped in a yummy high-performance analytical database engine.

See architecture and datasets and reading for more information.

Table of Contents generated with DocToc

Overview

FiloDB is a new open-source distributed, versioned, and columnar analytical database designed for modern streaming workloads.

  • High performance - faster than Parquet scan speeds, plus filtering along two or more dimensions
    • Very flexible filtering: filter on only part of a partition key, much more flexible than allowed in Cassandra
  • Compact storage - within 35% of Parquet
  • Idempotent writes - primary-key based appends and updates; easy exactly-once ingestion from streaming sources
  • Distributed - pluggable storage engine includes Apache Cassandra and in-memory
  • Low-latency - minimal SQL query latency of 25ms on one node; sub-second easily achievable with filtering and easy to use concurrency control
  • SQL queries - plug in Tableau or any tool using JDBC/ODBC drivers
  • Ingest from Spark/Spark Streaming from any supported Spark data source

Overview presentation -- see the docs folder for design docs.

To compile the .mermaid source files to .png's, install the Mermaid CLI.

Use Cases

  • Storage and analysis of streaming event / time series data
  • Data warehousing
  • In-memory database for Spark Streaming analytics
  • Low-latency in-memory SQL database engine

Anti-use-cases

  • Heavily transactional, update-oriented workflows

Roadmap

Your input is appreciated!

  • True columnar querying and execution, using late materialization and vectorization techniques
  • Use of GPU and SIMD instructions to speed up queries
  • Non-Spark ingestion API. Your input is again needed.
  • In-memory caching for significant query speedup
  • Projections. Often-repeated queries can be sped up significantly with projections.

Pre-requisites

  1. Java 8
  2. SBT to build
  3. Apache Cassandra (We prefer using CCM for local testing) (Optional if you are using the in-memory column store)
  4. Apache Spark (1.5.x)

Getting Started

  1. Clone the project and cd into the project directory,

    $ git clone https://github.com/tuplejump/FiloDB.git
    $ cd FiloDB
    
  2. Choose either the Cassandra column store (default) or the in-memory column store.

    • Start a Cassandra Cluster. If its not accessible at localhost:9042 update it in core/src/main/resources/application.conf.
    • Or, use FiloDB's in-memory column store with Spark (does not work with CLI). Pass the --conf spark.filodb.store=in-memory to spark-submit / spark-shell. This is a great option to test things out, and is really really fast!
  3. For Cassandra, run filo-cli --command init to initialize the default filodb keyspace.

  4. Now, you can use Spark to ingest/query, or the CLI to ingest/examine metadata.

Note: There is at least one release out now, tagged via Git and also located in the "Releases" tab on Github.

Introduction to FiloDB Data Modelling

Perhaps it's easiest by starting with a diagram of how FiloDB stores data.

Column A Column B
Partition key 1 Segment 1 Segment 2 Segment 1 Segment 2
Partition key 2 Segment 1 Segment 2 Segment 1 Segment 2

Three types of key define the data model of a FiloDB table.

  1. partition key - decides how data is going to be distributed across the cluster. All data within one partition key is guaranteed to fit on one node. May consist of multiple columns.
  2. segment key - groups row values into efficient chunks. Segments within a partition are sorted by segment key and range scans can be done over segment keys.
  3. row key - acts as a primary key within each partition and decides how data will be sorted within each segment. May consist of multiple columns.

The PRIMARY KEY for FiloDB consists of (partition key, row key). When choosing the above values you must make sure the combination of the two are unique. No component of a primary key may be null - see the :getOrElse function for a way of dealing with null inputs.

Specifying the partitioning column is optional. If a partitioning column is not specified, FiloDB will create a default one with a fixed value, which means everything will be thrown into one node, and is only suitable for small amounts of data. If you don't specify a partitioning column, then you have to make sure your row keys are all unique.

Computed Columns

You may specify a function, or computed column, for use with any key column. This is especially useful for working around the non-null requirement for keys, or for computing a good segment key.

Name Description Example
string returns a constant string value :string /0
getOrElse returns default value if column value is null :getOrElse columnA ---
round rounds down a numeric column. Useful for bucketing by time or bucketing numeric IDs. :round timestamp 10000
stringPrefix takes the first N chars of a string; good for partitioning :stringPrefix token 4

FiloDB vs Cassandra Data Modelling

  • Like Cassandra, partitions (physical rows) distribute data and clustering keys act as a primary key within a partition
  • Like Cassandra, a single partition is the smallest unit of parallelism when querying from Spark
  • Wider rows work better for FiloDB (bigger chunk/segment size)
  • FiloDB does not have Cassandra's restrictions for partition key filtering. You can filter by any partition keys with most operators. This means less tables in FiloDB can match more query patterns.

Data Modelling and Performance Considerations

Choosing Partition Keys.

  • Partition keys are the most efficient way to filter data. Remember that, unlike Cassandra, FiloDB is able to efficiently filter any column in a partition key -- even string contains, IN on only one column. It can do this because FiloDB pre-scans a much smaller table ahead of scanning the main columnar chunk table. This flexibility means that there is no need to populate different tables with different orders of partition keys just to optimize for different queries.
  • If there are too few partitions, then FiloDB will not be able to distribute and parallelize reads.
  • If the numer of rows in each partition is too few, then the storage will not be efficient.
  • If the partition key is time based, there may be a hotspot in the cluster as recent data is all written into the same set of replicas, and likewise for read patterns as well.

Segment Key and Chunk Size.

Within each partition, data is delineated by the segment key into segments. Within each segment, successive flushes of the MemTable writes data in chunks. The segmentation is key to sorting and filtering data within partitions, and the chunk size (which depends on segmentation) also affects performance. The smaller the chunk size, the higher the overhead of scanning data becomes.

Segmentation and chunk size distribution may be checked by the CLI analyze command. In addition, the following configuration affects segmentation and chunk size:

  • memtable.max-rows-per-table, memtable.flush-trigger-rows affects how many rows are kept in the MemTable at a time, and this along with how many partitions are in the MemTable directly leads to the chunk size upon flushing.
  • The segment size is directly controlled by the segment key. Choosing a segment key that groups data into big enough chunks (at least 1000 is a good guide) is highly recommended. Experimentation along with running filo-cli analyze is recommended to come up with a good segment key. See the Spark ingestion of GDELT below on an example... choosing an inappropriate segment key leads to MUCH slower ingest and read performance.
  • chunk_size option when creating a dataset caps the size of a single chunk.

Example FiloDB Schema for machine metrics

This is one way I would recommend setting things up to take advantage of FiloDB.

The metric names are the column names. This lets you select on just one metric and effectively take advantage of columnar layout.

  • Partition key = hostname
  • Row key = timestamp (say millis)
  • Segment key = :round timestamp 10000 (Timestamp rounded to nearest 10000 millis or 10 seconds)
  • Columns: hostname, timestamp, CPU, load_avg, disk_usage, etc.

You can add more metrics/columns over time, but storing each metric in its own column is FAR FAR more efficient, at least in FiloDB. For example, disk usage metrics are likely to have very different numbers than load_avg, and so Filo can optimize the storage of each one independently. Right now I would store them as ints and longs if possible.

With the above layout, as long as there aren’t too many hostnames, set the memtable max size and flush trigger to both high numbers, you should get good read performance. Queries that would work well for the above layout:

  • SELECT avg(load_avg), min(load_avg), max(load_avg) FROM metrics WHERE timestamp > t1 AND timestamp < t2 etc.

Queries that would work well once we expose a local Cassandra query interface:

  • Select metrics from one individual host

Another possible layout is something like this:

  • Partition key = hostname % 1024 (or pick your # of shards)
  • Row key = hostname, timestamp

Distributed Partitioning

Currently, FiloDB is a library in Spark and requires the user to distribute data such that no two nodes have rows with the same partition key.

  • The easiest strategy to accomplish this is to have data partitioned via a queue such as Kafka. That way, when the data comes into Spark Streaming, it is already partitioned correctly.
  • Another way of accomplishing this is to use a DataFrame's sort method before using the DataFrame write API.

Using FiloDB data-source with Spark

FiloDB has a Spark data-source module - filodb.spark. So, you can use the Spark Dataframes read and write APIs with FiloDB. To use it, follow the steps below

  1. Start Cassandra and update project configuration if required.
  2. From the FiloDB project directory, execute,
    $ sbt clean
    $ ./filo-cli --command init
    $ sbt spark/assembly
    
  3. Use the jar FiloDB/spark/target/scala-2.10/filodb-spark-assembly-0.2-SNAPSHOT.jar with Spark 1.5.x.

The options to use with the data-source api are:

option value command optional
dataset name of the dataset read/write No
row_keys comma-separated list of column name(s) or computed column functions to use for the row primary key within each partition. Cannot be null. Use :getOrElse function if null values might be encountered. write No
segment_key name of the column (could be computed) to use to group rows into segments in a partition. Cannot be null. Use :getOrElse function if null values might be encountered. write No
partition_keys comma-separated list of column name(s) or computed column functions to use for the partition key. Cannot be null. Use :getOrElse function if null values might be encountered. If not specified, defaults to :string /0 (a single partition). write Yes
splits_per_node number of read threads per node, defaults to 4 read Yes
chunk_size Max number of rows to put into one chunk. Note that this only has an effect if the dataset is created for the first time. write Yes
version numeric version of data to write, defaults to 0 read/write Yes

Partitioning columns could be created using an expression on the original column in Spark:

val newDF = df.withColumn("partition", df("someCol") % 100)

or even UDFs:

val idHash = sqlContext.udf.register("hashCode", (s: String) => s.hashCode())
val newDF = df.withColumn("partition", idHash(df("id")) % 100) 

However, note that the above methods will lead to a physical column being created, so use of computed columns is probably preferable.

Configuring FiloDB

Some options must be configured before starting the Spark Shell or Spark application. There are two methods:

  1. Modify the application.conf and rebuild, or repackage a new configuration.
  2. Override the built in defaults by setting SparkConf configuration values, preceding the filo settings with spark.filodb. For example, to change the keyspace, pass --conf spark.filodb.cassandra.keyspace=mykeyspace to Spark Shell/Submit. To use the fast in-memory column store instead of Cassandra, pass --conf spark.filodb.store=in-memory.

Spark data-source Example (spark-shell)

You can follow along using the Spark Notebook in doc/FiloDB.snb.... launch the notebook using EXTRA_CLASSPATH=$FILO_JAR ADD_JARS=$FILO_JAR ./bin/spark-notebook & where FILO_JAR is the path to filodb-spark-assembly jar.

Or you can start a spark-shell locally,

bin/spark-shell --jars ../FiloDB/spark/target/scala-2.10/filodb-spark-assembly-0.2-SNAPSHOT.jar --packages com.databricks:spark-csv_2.10:1.2.0 --driver-memory 3G --executor-memory 3G

Loading CSV file from Spark:

scala> val csvDF = sqlContext.read.format("com.databricks.spark.csv").
           option("header", "true").option("inferSchema", "true").
           load("../FiloDB/GDELT-1979-1984-100000.csv")

Creating a dataset from a Spark DataFrame,

scala> import org.apache.spark.sql.SaveMode
import org.apache.spark.sql.SaveMode

scala> csvDF.write.format("filodb.spark").
             option("dataset", "gdelt").
             option("row_keys", "GLOBALEVENTID").
             option("segment_key", ":round GLOBALEVENTID 10000").
             option("partition_keys", ":getOrElse MonthYear -1").
             mode(SaveMode.Overwrite).save()

Above, we partition the GDELT dataset by MonthYear, creating roughly 72 partitions for 1979-1984, with the unique GLOBALEVENTID used as a row key. We group every 10000 eventIDs into a segment using the convenient :round computed column (GLOBALEVENTID is correlated with time, so in this case we could pack segments with consecutive EVENTIDs). You could use multiple columns for the partition or row keys, of course. For example, to partition by country code and year instead:

scala> csvDF.write.format("filodb.spark").
             option("dataset", "gdelt_by_country_year").
             option("row_keys", "GLOBALEVENTID").
             option("segment_key", ":string 0").
             option("partition_keys", ":getOrElse Actor2CountryCode NONE,:getOrElse Year -1").
             mode(SaveMode.Overwrite).save()

Note that in the above case, since events are spread over a much larger number of partitions, it no longer makes sense to use GLOBALEVENTID as a segment key - at least with the original 10000 as a rounding factor. There are very few events for a given country and year within the space of 10000 event IDs, leading to inefficient storage. Instead, we use a single segment for each partition. We probably could have used :round GLOBALEVENTID 500000 or some other bigger factor as well. Using :round GLOBALEVENT 10000 lead to 3x slower ingest and at least 5x slower reads.

Note that for efficient columnar encoding, wide rows with fewer partition keys are better for performance.

Reading the dataset,

val df = sqlContext.read.format("filodb.spark").option("dataset", "gdelt").load()

The dataset can be queried using the DataFrame DSL. See the section Querying Datasets for examples.

Spark Streaming Example

It's not difficult to ingest data into FiloDB using Spark Streaming. Simple use foreachRDD on your DStream and then transform each RDD into a DataFrame.

For an example, see the StreamingTest.

Spark SQL Example (spark-sql)

Start Spark-SQL:

  bin/spark-sql --jars path/to/FiloDB/spark/target/scala-2.10/filodb-spark-assembly-0.2-SNAPSHOT.jar

Create a temporary table using an existing dataset,

  create temporary table gdelt
  using filodb.spark
  options (
   dataset "gdelt"
 );

Then, start running SQL queries!

NOTE: The above syntax should also work with remote SQL clients like beeline / spark-beeline. Just run the Hive ThriftServer that comes with Spark (NOTE: not all distributions of Spark comes with this, you may need to built it).

Querying Datasets

Now do some queries, using the DataFrame DSL:

scala> df.select(count(df("MonthYear"))).show()
...<skipping lots of logging>...
COUNT(MonthYear)
4037998

or SQL, to find the top 15 events with the highest tone:

scala> df.registerTempTable("gdelt")

scala> sqlContext.sql("SELECT Actor1Name, Actor2Name, AvgTone FROM gdelt ORDER BY AvgTone DESC LIMIT 15").collect()
res13: Array[org.apache.spark.sql.Row] = Array([208077.29634561483])

Now, how about something uniquely Spark .. feed SQL query results to MLLib to compute a correlation:

scala> import org.apache.spark.mllib.stat.Statistics

scala> val numMentions = df.select("NumMentions").map(row => row.getInt(0).toDouble)
numMentions: org.apache.spark.rdd.RDD[Double] = MapPartitionsRDD[100] at map at DataFrame.scala:848

scala> val numArticles = df.select("NumArticles").map(row => row.getInt(0).toDouble)
numArticles: org.apache.spark.rdd.RDD[Double] = MapPartitionsRDD[104] at map at DataFrame.scala:848

scala> val correlation = Statistics.corr(numMentions, numArticles, "pearson")

Using the CLI

The filo-cli accepts arguments as key-value pairs. The following keys are supported:

key purpose
dataset It is required for all the operations. Its value should be the name of the dataset
limit This is optional key to be used with select. Its value should be the number of rows required.
columns This is required for defining the schema of a dataset. Its value should be a comma-separated string of the format, column1:typeOfColumn1,column2:typeOfColumn2 where column1 and column2 are the names of the columns and typeOfColumn1 and typeOfColumn2 are one of int,long,double,string,bool
rowKeys This is required for defining the row keys. Its value should be comma-separated list of column names or computed column functions to make up the row key
segmentKey The column name or computed column for the segment key
partitionKeys Comma-separated list of column names or computed columns to make up the partition key
command Its value can be either of init,create,importcsv,analyze or list.

The init command is used to create the FiloDB schema.

The create command is used to define new a dataset. For example,
./filo-cli --command create --dataset playlist --columns id:int,album:string,artist:string,title:string --sortColumn id
Note: The sort column is not optional.

The list command can be used to view the schema of a dataset. For example,
./filo-cli --command list --dataset playlist

The importcsv command can be used to load data from a CSV file into a dataset. For example,
./filo-cli --command importcsv --dataset playlist --filename playlist.csv
Note: The CSV file should be delimited with comma and have a header row. The column names must match those specified when creating the schema for that dataset.
select Its value should be a comma-separated string of the columns to be selected,
./filo-cli --dataset playlist --select album,title
The result from select is printed in the console by default. An output file can be specified with the key --outfile. For example,
./filo-cli --dataset playlist --select album,title --outfile playlist.csv
delimiter This is optional key to be used with importcsv command. Its value should be the field delimiter character. Default value is comma.
timeoutMinutes The number of minutes to time out for CSV ingestion. Needs to be greater than the max amount of time for ingesting the whole file. Defaults to 99.

CLI Example

The following examples use the GDELT public dataset and can be run from the project directory.

Create a dataset with all the columns :

./filo-cli --command create --dataset gdelt --columns GLOBALEVENTID:int,SQLDATE:string,MonthYear:int,Year:int,FractionDate:double,Actor1Code:string,Actor1Name:string,Actor1CountryCode:string,Actor1KnownGroupCode:string,Actor1EthnicCode:string,Actor1Religion1Code:string,Actor1Religion2Code:string,Actor1Type1Code:string,Actor1Type2Code:string,Actor1Type3Code:string,Actor2Code:string,Actor2Name:string,Actor2CountryCode:string,Actor2KnownGroupCode:string,Actor2EthnicCode:string,Actor2Religion1Code:string,Actor2Religion2Code:string,Actor2Type1Code:string,Actor2Type2Code:string,Actor2Type3Code:string,IsRootEvent:int,EventCode:string,EventBaseCode:string,EventRootCode:string,QuadClass:int,GoldsteinScale:double,NumMentions:int,NumSources:int,NumArticles:int,AvgTone:double,Actor1Geo_Type:int,Actor1Geo_FullName:string,Actor1Geo_CountryCode:string,Actor1Geo_ADM1Code:string,Actor1Geo_Lat:double,Actor1Geo_Long:double,Actor1Geo_FeatureID:int,Actor2Geo_Type:int,Actor2Geo_FullName:string,Actor2Geo_CountryCode:string,Actor2Geo_ADM1Code:string,Actor2Geo_Lat:double,Actor2Geo_Long:double,Actor2Geo_FeatureID:int,ActionGeo_Type:int,ActionGeo_FullName:string,ActionGeo_CountryCode:string,ActionGeo_ADM1Code:string,ActionGeo_Lat:double,ActionGeo_Long:double,ActionGeo_FeatureID:int,DATEADDED:string,Actor1Geo_FullLocation:string,Actor2Geo_FullLocation:string,ActionGeo_FullLocation:string --rowKeys GLOBALEVENTID --segmentKey ':string 0'

Verify the dataset metadata:

./filo-cli --command list --dataset gdelt

Import data from a CSV file:

./filo-cli --command importcsv --dataset gdelt --filename GDELT-1979-1984-100000.csv

Query/export some columns:

./filo-cli --dataset gdelt --select MonthYear,Actor2Code --limit 5 --outfile out.csv

Current Status

  • Version 0.1 is the stable, latest released version. It offers a stable point from which to try FiloDB.
  • Master contains much more features - multi column partition and row keys, separate segment key, much richer projection key filtering (IN, etc.), better performance and error handling

Deploying

The current version assumes Spark 1.5.x and Cassandra 2.1.x or 2.2.x.

There is a branch for Datastax Enterprise 4.8 / Spark 1.4. Note that if you are using DSE or have vnodes enabled, a lower number of vnodes (16 or less) is STRONGLY recommended as higher numbers of vnodes slows down queries substantially and basically prevents subsecond queries from happening.

Building and Testing

Run the tests with sbt test, or for continuous development, sbt ~test. Noisy cassandra logs can be seen in filodb-test.log.

To run benchmarks, from within SBT:

cd jmh
jmh:run -i 5 -wi 5 -f3

You can get the huge variety of JMH options by running jmh:run -help.

You can help!

  • Send your use cases for OLAP on Cassandra and Spark
    • Especially IoT and Geospatial
  • Email if you want to contribute

Your feedback will help decide the next batch of features, such as: - which data types to add support for - what architecture is best supported

About

Distributed. Columnar. Versioned. Streaming. SQL.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Scala 99.7%
  • Shell 0.3%