Skip to content

cjf8899/KeepAugment_Pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 

Repository files navigation

KeepAugment_Pytorch

memoryblock


Results

CIFAR 10

Model ResNet-18 Wide ResNet-28-10
Cutout 95.6±0.1(paepr) 96.9±0.1(paepr)
KeepCutout 96.2 97.2
KeepCutout (low resolution) 96.1 97.1
KeepCutout (early loss) 96.2 TODO
KeepCutout (low + early) 96.2 TODO
Model ResNet-18 Wide ResNet-28-10
AutoAugment 96.0 97.3±0.1(paepr)
KeepAutoAugment 96.4 97.4
KeepAutoAugment (low resolution) 96.3 97.5
KeepAutoAugment (early loss) 96.3 97.4
KeepAutoAugment (low + early) 96.5 TODO

All results have slight differences(±0.1).

Run

The type of method is
'keep_cutout', 'keep_cutout_low', 'keep_cutout_early', 'keep_cutout_low_early',
'keep_autoaugment', 'keep_autoaugment_low', 'keep_autoaugment_early', 'keep_autoaugment_low_early'.

The type of model is 'resnet', 'wide_resnet'.

python train.py --model resnet --method keep_cutout

Any feedback on code simplification and incorrect implementation would be appreciated!

Referenced. Thank you all:+1:

baseline & cutout code : https://github.com/uoguelph-mlrg/Cutout
autoaugment code : https://github.com/DeepVoltaire/AutoAugment
saliency map code : https://github.com/sunnynevarekar/pytorch-saliency-maps

About

🔅Unofficial PyTorch implementation of KeepAugment

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages