Skip to content

cjsotopa/Quantum

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Hybrid Model of Quantum Transfer Learning to Classify Face Images with a COVID-19 Mask

NN_BEL

The problem of the COVID-19 disease has determined that about 219 million people have contracted it, of which 4.55 million died. This importance has led to the implementation of security protocols to prevent the spread of this disease. One of the main protocols is to use protective masks that properly cover the nose and mouth. The objective of this paper was to classify images of faces using protective masks of COVID-19, in the classes identified as correct mask, incorrect mask, and no mask, with a Hybrid model of Quantum Transfer Learning. To do this, the method used has made it possible to gather a data set of 660 people of both sexes (man and woman), with ages ranging from 18 to 86 years old. The classic transfer learning model chosen was ResNet-18; the variational layers of the proposed model were built with the Basic Entangler Layers template for four qubits, and the optimization of the training was carried out with the Stochastic Gradient Descent with Nesterov Momentum. The main finding was the 99.05% accuracy in classifying the correct Protective Masks using the Pennylane quantum simulator in the tests performed. The conclusion reached is that the proposed hybrid model is an excellent option to detect the correct position of the protective mask for Covid-19.

predict

Team

Dataset

A dataset of more than 250,000 images of faces using masks is provided, it consists of high-quality images 1024x1024, these images were not edited by computer, so real people are shown as is using masks of 4 different ways.

About

Quantum Computing Paper

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published