Skip to content

Commit

Permalink
[Docs] oclip readme (open-mmlab#1505)
Browse files Browse the repository at this point in the history
* [WIP] oclip docs

* oclip readthe docs

* rename oclip-resnet to resnet-oclip

* updata hemean

* updata link

* updata title
  • Loading branch information
Harold-lkk authored Nov 3, 2022
1 parent d924440 commit cf454ca
Show file tree
Hide file tree
Showing 22 changed files with 260 additions and 33 deletions.
7 changes: 7 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -110,6 +110,13 @@ Please see [Quick Run](https://mmocr.readthedocs.io/en/dev-1.x/get_started/quick

Supported algorithms:

<details open>
<summary>BackBone</summary>

- [x] [oCLIP](configs/backbone/oclip/README.md) (ECCV'2022)

</details>

<details open>
<summary>Text Detection</summary>

Expand Down
7 changes: 7 additions & 0 deletions README_zh-CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -110,6 +110,13 @@ pip3 install -e .

支持的算法:

<details open>
<summary>骨干网络</summary>

- [x] [oCLIP](configs/backbone/oclip/README.md) (ECCV'2022)

</details>

<details open>
<summary>文字检测</summary>

Expand Down
41 changes: 41 additions & 0 deletions configs/backbone/oclip/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
# oCLIP

> [Language Matters: A Weakly Supervised Vision-Language Pre-training Approach for Scene Text Detection and Spotting](https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136880282.pdf)
<!-- [ALGORITHM] -->

## Abstract

Recently, Vision-Language Pre-training (VLP) techniques have greatly benefited various vision-language tasks by jointly learning visual and textual representations, which intuitively helps in Optical Character Recognition (OCR) tasks due to the rich visual and textual information in scene text images. However, these methods cannot well cope with OCR tasks because of the difficulty in both instance-level text encoding and image-text pair acquisition (i.e. images and captured texts in them). This paper presents a weakly supervised pre-training method, oCLIP, which can acquire effective scene text representations by jointly learning and aligning visual and textual information. Our network consists of an image encoder and a character-aware text encoder that extract visual and textual features, respectively, as well as a visual-textual decoder that models the interaction among textual and visual features for learning effective scene text representations. With the learning of textual features, the pre-trained model can attend texts in images well with character awareness. Besides, these designs enable the learning from weakly annotated texts (i.e. partial texts in images without text bounding boxes) which mitigates the data annotation constraint greatly. Experiments over the weakly annotated images in ICDAR2019-LSVT show that our pre-trained model improves F-score by +2.5% and +4.8% while transferring its weights to other text detection and spotting networks, respectively. In addition, the proposed method outperforms existing pre-training techniques consistently across multiple public datasets (e.g., +3.2% and +1.3% for Total-Text and CTW1500).

<div align=center>
<img src="https://user-images.githubusercontent.com/24622904/199475057-aa688422-518d-4d7a-86fc-1be0cc1b5dc6.png"/>
</div>

## Models

| Backbone | Pre-train Data | Model |
| :-------: | :------------: | :-------------------------------------------------------------------------------: |
| ResNet-50 | SynthText | [Link](https://download.openmmlab.com/mmocr/backbone/resnet50-oclip-7ba0c533.pth) |

```{note}
The model is converted from the official [oCLIP](https://github.com/bytedance/oclip.git).
```

## Supported Text Detection Models

| | [DBNet](https://mmocr.readthedocs.io/en/dev-1.x/textdet_models.html#dbnet) | [DBNet++](https://mmocr.readthedocs.io/en/dev-1.x/textdet_models.html#dbnetpp) | [FCENet](https://mmocr.readthedocs.io/en/dev-1.x/textdet_models.html#fcenet) | [TextSnake](https://mmocr.readthedocs.io/en/dev-1.x/textdet_models.html#fcenet) | [PSENet](https://mmocr.readthedocs.io/en/dev-1.x/textdet_models.html#psenet) | [DRRG](https://mmocr.readthedocs.io/en/dev-1.x/textdet_models.html#drrg) | [Mask R-CNN](https://mmocr.readthedocs.io/en/dev-1.x/textdet_models.html#mask-r-cnn) |
| :-------: | :------------------------------------------------------------------------: | :----------------------------------------------------------------------------: | :--------------------------------------------------------------------------: | :-----------------------------------------------------------------------------: | :--------------------------------------------------------------------------: | :----------------------------------------------------------------------: | :----------------------------------------------------------------------------------: |
| ICDAR2015 |||| || ||
| CTW1500 | | ||||||

## Citation

```bibtex
@article{xue2022language,
title={Language Matters: A Weakly Supervised Vision-Language Pre-training Approach for Scene Text Detection and Spotting},
author={Xue, Chuhui and Zhang, Wenqing and Hao, Yu and Lu, Shijian and Torr, Philip and Bai, Song},
journal={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2022}
}
```
13 changes: 13 additions & 0 deletions configs/backbone/oclip/metafile.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
Collections:
- Name: oCLIP
Metadata:
Training Data: SynthText
Architecture:
- CLIPResNet
Paper:
URL: https://arxiv.org/abs/2203.03911
Title: 'Language Matters: A Weakly Supervised Vision-Language Pre-training Approach for Scene Text Detection and Spotting'
README: configs/backbone/oclip/README.md

Models:
Weights: https://download.openmmlab.com/mmocr/backbone/resnet50-oclip-7ba0c533.pth
10 changes: 6 additions & 4 deletions configs/textdet/dbnet/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,10 +16,12 @@ Recently, segmentation-based methods are quite popular in scene text detection,

### ICDAR2015

| Method | Pretrained Model | Training set | Test set | #epochs | Test size | Precision | Recall | Hmean | Download |
| :--------------------------------------: | :-------------------------------------------------: | :-------------: | :------------: | :-----: | :-------: | :-------: | :----: | :----: | :-----------------------------------------: |
| [DBNet_r18](/configs/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015.py) | ImageNet | ICDAR2015 Train | ICDAR2015 Test | 1200 | 736 | 0.8853 | 0.7583 | 0.8169 | [model](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015/dbnet_resnet18_fpnc_1200e_icdar2015_20220825_221614-7c0e94f2.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015/20220825_221614.log) |
| [DBNet_r50dcn](/configs/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py) | [Synthtext](https://download.openmmlab.com/mmocr/textdet/dbnet/tmp_1.0_pretrain/dbnet_r50dcnv2_fpnc_sbn_2e_synthtext_20210325-ed322016.pth) | ICDAR2015 Train | ICDAR2015 Test | 1200 | 1024 | 0.8784 | 0.8315 | 0.8543 | [model](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015_20220828_124917-452c443c.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015/20220828_124917.log) |
| Method | Backbone | Pretrained Model | Training set | Test set | #epochs | Test size | Precision | Recall | Hmean | Download |
| :----------------------------: | :------------------------------: | :--------------------------------------: | :-------------: | :------------: | :-----: | :-------: | :-------: | :----: | :----: | :------------------------------: |
| [DBNet_r18](/configs/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015.py) | ResNet18 | - | ICDAR2015 Train | ICDAR2015 Test | 1200 | 736 | 0.8853 | 0.7583 | 0.8169 | [model](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015/dbnet_resnet18_fpnc_1200e_icdar2015_20220825_221614-7c0e94f2.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015/20220825_221614.log) |
| [DBNet_r50](/configs/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py) | ResNet50 | - | ICDAR2015 Train | ICDAR2015 Test | 1200 | 1024 | 0.8744 | 0.8276 | 0.8504 | [model](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet50_1200e_icdar2015/dbnet_resnet50_1200e_icdar2015_20221102_115917-54f50589.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet50_1200e_icdar2015/20221102_115917.log) |
| [DBNet_r50dcn](/configs/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py) | ResNet50-DCN | [Synthtext](https://download.openmmlab.com/mmocr/textdet/dbnet/tmp_1.0_pretrain/dbnet_r50dcnv2_fpnc_sbn_2e_synthtext_20210325-ed322016.pth) | ICDAR2015 Train | ICDAR2015 Test | 1200 | 1024 | 0.8784 | 0.8315 | 0.8543 | [model](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015_20220828_124917-452c443c.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015/20220828_124917.log) |
| [DBNet_r50-oclip](/configs/textdet/dbnet/dbnet_resnet50-oclip_fpnc_1200e_icdar2015.py) | [ResNet50-oCLIP](https://download.openmmlab.com/mmocr/backbone/resnet50-oclip-7ba0c533.pth) | - | ICDAR2015 Train | ICDAR2015 Test | 1200 | 1024 | 0.9052 | 0.8272 | 0.8644 | [model](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet50-oclip_1200e_icdar2015/dbnet_resnet50-oclip_1200e_icdar2015_20221102_115917-bde8c87a.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet50-oclip_1200e_icdar2015/20221102_115917.log) |

## Citation

Expand Down
24 changes: 24 additions & 0 deletions configs/textdet/dbnet/metafile.yml
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,18 @@ Models:
hmean-iou: 0.8169
Weights: https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015/dbnet_resnet18_fpnc_1200e_icdar2015_20220825_221614-7c0e94f2.pth

- Name: dbnet_resnet50_fpnc_1200e_icdar2015
In Collection: DBNet
Config: configs/textdet/dbnet/dbnet_resnet50_fpnc_1200e_icdar2015.py
Metadata:
Training Data: ICDAR2015
Results:
- Task: Text Detection
Dataset: ICDAR2015
Metrics:
hmean-iou: 0.8504
Weights: https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet50_1200e_icdar2015/dbnet_resnet50_1200e_icdar2015_20221102_115917-54f50589.pth

- Name: dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015
In Collection: DBNet
Config: configs/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py
Expand All @@ -38,3 +50,15 @@ Models:
Metrics:
hmean-iou: 0.8543
Weights: https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015_20220828_124917-452c443c.pth

- Name: dbnet_resnet50-oclip_fpnc_1200e_icdar2015
In Collection: DBNet
Config: configs/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py
Metadata:
Training Data: ICDAR2015
Results:
- Task: Text Detection
Dataset: ICDAR2015
Metrics:
hmean-iou: 0.8644
Weights: https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet50-oclip_1200e_icdar2015/dbnet_resnet50-oclip_1200e_icdar2015_20221102_115917-bde8c87a.pth
8 changes: 5 additions & 3 deletions configs/textdet/dbnetpp/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,9 +16,11 @@ Recently, segmentation-based scene text detection methods have drawn extensive a

### ICDAR2015

| Method | Pretrained Model | Training set | Test set | #epochs | Test size | Precision | Recall | Hmean | Download |
| :--------------------------------------: | :-------------------------------------------------: | :-------------: | :------------: | :-----: | :-------: | :-------: | :----: | :----: | :-----------------------------------------: |
| [DBNetpp_r50dcn](/configs/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015.py) | [Synthtext](/configs/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_100k_synthtext.py) ([model](https://download.openmmlab.com/mmocr/textdet/dbnetpp/tmp_1.0_pretrain/dbnetpp_r50dcnv2_fpnc_100k_iter_synthtext-20220502-352fec8a.pth)) | ICDAR2015 Train | ICDAR2015 Test | 1200 | 1024 | 0.9116 | 0.8291 | 0.8684 | [model](https://download.openmmlab.com/mmocr/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015_20220829_230108-f289bd20.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015/20220829_230108.log) |
| Method | BackBone | Pretrained Model | Training set | Test set | #epochs | Test size | Precision | Recall | Hmean | Download |
| :----------------------------: | :------------------------------: | :--------------------------------------: | :-------------: | :------------: | :-----: | :-------: | :-------: | :----: | :----: | :------------------------------: |
| [DBNetpp_r50](/configs/textdet/dbnetpp/dbnetpp_resnet50-oclip_fpnc_1200e_icdar2015.py) | ResNet50 | - | ICDAR2015 Train | ICDAR2015 Test | 1200 | 1024 | 0.9079 | 0.8209 | 0.8622 | [model](https://download.openmmlab.com/mmocr/textdet/dbnetpp/dbnetpp_resnet50_fpnc_1200e_icdar2015/dbnetpp_resnet50_fpnc_1200e_icdar2015_20221025_185550-013730aa.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/dbnetpp/dbnetpp_resnet50_fpnc_1200e_icdar2015/20221025_185550.log) |
| [DBNetpp_r50dcn](/configs/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015.py) | ResNet50 | [Synthtext](/configs/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_100k_synthtext.py) ([model](https://download.openmmlab.com/mmocr/textdet/dbnetpp/tmp_1.0_pretrain/dbnetpp_r50dcnv2_fpnc_100k_iter_synthtext-20220502-352fec8a.pth)) | ICDAR2015 Train | ICDAR2015 Test | 1200 | 1024 | 0.9116 | 0.8291 | 0.8684 | [model](https://download.openmmlab.com/mmocr/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015_20220829_230108-f289bd20.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015/20220829_230108.log) |
| [DBNetpp_r50-oclip](/configs/textdet/dbnetpp/dbnetpp_resnet50-oclip_fpnc_1200e_icdar2015.py) | [ResNet50-oCLIP](https://download.openmmlab.com/mmocr/backbone/resnet50-oclip-7ba0c533.pth) | - | ICDAR2015 Train | ICDAR2015 Test | 1200 | 1024 | 0.9174 | 0.8609 | 0.8882 | [model](https://download.openmmlab.com/mmocr/textdet/dbnetpp/dbnetpp_resnet50-oclip_fpnc_1200e_icdar2015/dbnetpp_resnet50-oclip_fpnc_1200e_icdar2015_20221101_124139-4ecb39ac.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/dbnetpp/dbnetpp_resnet50-oclip_fpnc_1200e_icdar2015/20221101_124139.log) |

## Citation

Expand Down
24 changes: 24 additions & 0 deletions configs/textdet/dbnetpp/metafile.yml
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,18 @@ Collections:
README: configs/textdet/dbnetpp/README.md

Models:
- Name: dbnetpp_resnet50_fpnc_1200e_icdar2015
In Collection: DBNetpp
Config: configs/textdet/dbnetpp/dbnetpp_resnet50_fpnc_1200e_icdar2015.py
Metadata:
Training Data: ICDAR2015
Results:
- Task: Text Detection
Dataset: ICDAR2015
Metrics:
hmean-iou: 0.8622
Weights: https://download.openmmlab.com/mmocr/textdet/dbnetpp/dbnetpp_resnet50_fpnc_1200e_icdar2015/dbnetpp_resnet50_fpnc_1200e_icdar2015_20221025_185550-013730aa.pth

- Name: dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015
In Collection: DBNetpp
Config: configs/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015.py
Expand All @@ -26,3 +38,15 @@ Models:
Metrics:
hmean-iou: 0.8684
Weights: https://download.openmmlab.com/mmocr/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015_20220829_230108-f289bd20.pth

- Name: dbnetpp_resnet50-oclip_fpnc_1200e_icdar2015
In Collection: DBNetpp
Config: configs/textdet/dbnetpp/dbnetpp_resnet50-oclip_fpnc_1200e_icdar2015.py
Metadata:
Training Data: ICDAR2015
Results:
- Task: Text Detection
Dataset: ICDAR2015
Metrics:
hmean-iou: 0.8882
Weights: https://download.openmmlab.com/mmocr/textdet/dbnetpp/dbnetpp_resnet50-oclip_fpnc_1200e_icdar2015/dbnetpp_resnet50-oclip_fpnc_1200e_icdar2015_20221101_124139-4ecb39ac.pth
7 changes: 4 additions & 3 deletions configs/textdet/drrg/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,9 +16,10 @@ Arbitrary shape text detection is a challenging task due to the high variety and

### CTW1500

| Method | Pretrained Model | Training set | Test set | #epochs | Test size | Precision | Recall | Hmean | Download |
| :----------------------------------------------------------: | :--------------: | :-----------: | :----------: | :-----: | :-------: | :-------: | :----: | :----: | :------------------------------------------------------------: |
| [DRRG](/configs/textdet/drrg/drrg_resnet50_fpn-unet_1200e_ctw1500.py) | ImageNet | CTW1500 Train | CTW1500 Test | 1200 | 640 | 0.8775 | 0.8179 | 0.8467 | [model](https://download.openmmlab.com/mmocr/textdet/drrg/drrg_resnet50_fpn-unet_1200e_ctw1500/drrg_resnet50_fpn-unet_1200e_ctw1500_20220827_105233-d5c702dd.pth) \\ [log](https://download.openmmlab.com/mmocr/textdet/drrg/drrg_resnet50_fpn-unet_1200e_ctw1500/20220827_105233.log) |
| Method | BackBone | Pretrained Model | Training set | Test set | #epochs | Test size | Precision | Recall | Hmean | Download |
| :-------------------------------------: | :---------------------------------------: | :--------------: | :-----------: | :----------: | :-----: | :-------: | :-------: | :----: | :----: | :----------------------------------------: |
| [DRRG](/configs/textdet/drrg/drrg_resnet50_fpn-unet_1200e_ctw1500.py) | ResNet50 | - | CTW1500 Train | CTW1500 Test | 1200 | 640 | 0.8775 | 0.8179 | 0.8467 | [model](https://download.openmmlab.com/mmocr/textdet/drrg/drrg_resnet50_fpn-unet_1200e_ctw1500/drrg_resnet50_fpn-unet_1200e_ctw1500_20220827_105233-d5c702dd.pth) \\ [log](https://download.openmmlab.com/mmocr/textdet/drrg/drrg_resnet50_fpn-unet_1200e_ctw1500/20220827_105233.log) |
| [DRRG_r50-oclip](/configs/textdet/drrg/drrg_resnet50-oclip_fpn-unet_1200e_ctw1500.py) | [ResNet50-oCLIP](https://download.openmmlab.com/mmocr/backbone/resnet50-oclip-7ba0c533.pth) | - | CTW1500 Train | CTW1500 Test | 1200 | | | | | [model](<>) \\ [log](<>) |

## Citation

Expand Down
Loading

0 comments on commit cf454ca

Please sign in to comment.