Skip to content

Commit

Permalink
adding equation sheet
Browse files Browse the repository at this point in the history
  • Loading branch information
cooplab committed May 25, 2020
1 parent 680eb85 commit 6cc3438
Show file tree
Hide file tree
Showing 7 changed files with 73 additions and 17 deletions.
2 changes: 1 addition & 1 deletion Chapters/Genetic_drift_selection.tex
Original file line number Diff line number Diff line change
Expand Up @@ -112,7 +112,7 @@ \section{Stochastic loss of strongly selected alleles}
\end{equation}
Solving this we find that
\begin{equation}
p_F = 2s.
p_F = 2s. \label{eqn:prob_fix_strong}
\end{equation}
Thus even an allele with a $1\%$ selection coefficient has a $98\%$
probability of being lost when it is first introduced into the
Expand Down
6 changes: 3 additions & 3 deletions Chapters/Interaction_selection_mut_mig.tex
Original file line number Diff line number Diff line change
Expand Up @@ -98,7 +98,7 @@ \subsection{Mutation--Selection Balance}
so eqn.\ \eqref{eqn:mut_sel_bal} is not valid. However, we can make an argument similar to the one above to show
that, for truly recessive alleles,
\begin{equation}
q_e = \sqrt{\frac{\mu}{s}}.
q_e = \sqrt{\frac{\mu}{s}}. \eqref{eqn:recess_mut_sel_bal}
\end{equation}
\graham{Add figure illustrating the freq as a function of h and s}
\begin{marginfigure}
Expand Down Expand Up @@ -370,7 +370,7 @@ \subsection{Migration--selection balance}
selection model, resulting in a diploid
migration--selection balance equilibrium frequency of
\begin{equation}
q_{e,1} = \frac{m}{hs}
q_{e,1} = \frac{m}{hs} \label{eqn:mig_sel_eq}
\end{equation}

\begin{figure}
Expand Down Expand Up @@ -477,7 +477,7 @@ \subsection{Migration--selection balance}
tangent) of $q(x)$ at $x=0$. See Figure \ref{fig:cline_tangent}. Under this definition, the cline width is
approximately
\begin{equation}
0.6 \sigma/\sqrt{s} ~\textrm{miles},
0.6 \sigma/\sqrt{s} ~\textrm{miles}, \label{eqn:cline_width}
\end{equation}
note that the units are miles here just because we defined the average
dispersal distance ($\sigma$) in miles above. Thus the cline will be wider if individuals dispersal further, higher
Expand Down
2 changes: 1 addition & 1 deletion Chapters/Multi_trait_selection.tex
Original file line number Diff line number Diff line change
Expand Up @@ -426,7 +426,7 @@ \subsection{Hamilton's Rule and the evolution of altruistic and
% http://darwin-online.org.uk/content/frameset?pageseq=23&itemID=F8.2&viewtype=side


%%
%% Beaver https://twitter.com/EponymousBreeze/status/1226934486090145799/photo/1
\paragraph{Other forms of alturism}
Kin-selection can favour altruism because individuals carrying
altruistic alleles interact with other \emph{ related} individuals who tend to display altruistic phenotypes and so gain an advantage. However, there are other ways that altruistic behaviours can spread than just through the interactions with kin.
Expand Down
6 changes: 3 additions & 3 deletions Chapters/One_locus_selection.tex
Original file line number Diff line number Diff line change
Expand Up @@ -111,11 +111,11 @@ \subsection{Haploid selection model}
In practice, it is often helpful to parametrize the relative fitnesses $w_i$ in a specific way. For example, we may set $w_1 = 1$ and $w_2 = 1 - s$, where $s$ is called the selection coefficient. Using this parametrization, $s$ is simply the difference in relative fitnesses between the two alleles. Equation \eqref{eq:haploid_tau_gen} becomes
\begin{equation}
\label{eq:haploid_tau_gen_expl}
p_{t+\tau} = \frac{p_{t}}{p_{t} + q_{t} (1 - s)^{\tau}},
p_{\tau} = \frac{p_{0}}{p_0 + q_0 (1 - s)^{\tau}},
\end{equation}
as $w_2 / w_1 = 1 - s$. Then, if $s \ll 1$, we can approximate $(1-s)^{\tau}$ in the denominator by $\exp(-s\tau)$ to obtain
\begin{equation} \label{eq:haploid_logistic growth}
p_{t+\tau} \approx \frac{p_t}{p_t + q_t e^{-s\tau}}.
p_{\tau} \approx \frac{p_0}{p_0 + q_0 e^{-s\tau}}.
\end{equation}
This equation takes the form of a logistic function. That is because
we are looking at the relative frequencies of two `populations' (of
Expand Down Expand Up @@ -849,7 +849,7 @@ \subsection{Heterozygote advantage}
Using our $s_1$ and $s_2$ parametrization above, we see that the marginal fitnesses of
the two alleles are equal when
\begin{equation}
p_e = \frac{s_2}{s_1+s_2}
p_e = \frac{s_2}{s_1+s_2} \label{eqn:het_ad_eq}
\end{equation}
\begin{marginfigure}
\begin{center}
Expand Down
44 changes: 44 additions & 0 deletions math_background/Equation_sheet.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
% \usepackage{multicol} %%For eqn sheet https://tex.stackexchange.com/questions/152093/troubles-with-a-two-column-document-using-tufte-handout


%\d% ocumentclass[12pt,twocolumn]{article}
% % \usepackage{nicefrac}
% % \usepackage{amsmath}
% % \usepackage{amsfonts}
% % \usepackage{amssymb}
% % \usepackage[dvipsnames]{xcolor}
% % \newcounter{question}[section] %%modified from https://www.sharelatex.com/learn/Counters
% % %\newenvironment{question}[1][]{\refstepcounter{question}\par \begin{tcolorbox}
% % % \medskip \textbf{Question~\thequestion. #1}\rmfamily}{\medskip} \end{tcolorbox}
% % \newcommand{\E}{\mathbb{E}}
% % \renewcommand{\P}{\mathbb{P}}
% % \newcommand{\half}{\tfrac{1}{2}}

%\newcommand{\wbar}{\overline{w}}
% New commands added by Simon:
%\newcommand{\fis}{F_{\mathrm{IS}}}
%\newcommand{\fit}{F_{\mathrm{IT}}}
%\newcommand{\fst}{F_{\mathrm{ST}}}
%\newcommand{\Wbar}{\overline{W}}

%\newenvironment{question}[1][]{\refstepcounter{question}\par\medskip
% \textbf{Question~\thequestion. #1} \rmfamily}{\medskip}


%\begin{document}
\section*{Equation Sheet}
\begin{table*}
% \begin{tabular}{llll}
% \csvreader[separator=semicolon]{math_background/Equation_sheet.txt}
%\end{tabular}
\csvautobooktabular[separator=semicolon]{math_background/Equation_sheet.txt} % can control this more https://mirror.hmc.edu/ctan/macros/latex/contrib/csvsimple/csvsimple.pdf
% https://tex.stackexchange.com/questions/324777/one-of-the-fields-in-the-csv-read-by-csvreader-has-a-lot-of-comma
\end{table*} %, table head=\hline, table foot=\hline

%\newpage
%\begin{multicols}{2}

%\end{multicols}


%\end{document}
30 changes: 21 additions & 9 deletions math_background/Equation_sheet.txt
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ Equation ; ref. ; Equation ; ref.
$F_{ij}= 0 \times r_0 + (\nicefrac{1}{4}) r_1 + (\nicefrac{1}{2}) r_2$ ; \eqref{eqn:coeffkinship_step} ; $(1-F) p^2 + F p (1-F) 2pq (1-F) q^2 + F q$ ; \eqref{table:GeneralizedHWE}
; ; ;
F statistics ; a ; b ; c
$\fst =1-\frac{H_S}{H_T}$ ; \eqref{eqn:FST}. ; $\fit =1-\frac{H_I}{H_T},~~\fis =1-\frac{H_I}{H_S}$ ; \eqref{eqn:FIT}, ~ \eqref{eqn:FIS}
$\fst =1-\frac{H_S}{H_T}$ ; \eqref{eqn:FST}. ; "$\fit =1-\frac{H_I}{H_T},~~\fis =1-\frac{H_I}{H_S}$" ; "\eqref{eqn:FIT}, ~ \eqref{eqn:FIS}"
; ; ;
Relationship among F statistics ; ; Linkage disequilibrium (LD) ; ~
$(1-\fit) =(1-\fis)(1-\fst)$ ; \eqref{eqn:F_relationships} ; $D = p_{AB} - p_Ap_B $ ; \eqref{eqn:LD_def}
Expand All @@ -12,16 +12,28 @@ Decay of LD ; ; Decay of Heterozygosity ; ~
$D_t= (1-r)^t D_0 \approx D_0 e^{-rt}$ ; \eqref{eqn_LD_decay} ; $H_t = \left(1-\frac{1}{2N_e} \right)^tH_0 \approx H_0 e^{-\nicefrac{t}{2N_e}}$ ; \eqref{eqn:loss_het_discrete}
; ; ;
Equilibrium level of neutral polymorphism ; \eqref{eqn:hetero} ; Coalescent time and time to MRCA ; ~
$H = \frac{4N_e\mu}{1+4N_e\mu} \approx 4N_e\mu $ ; ~ ; $\E[T_k] = \frac{2 N_e}{ {k \choose 2} },~~~~\E[T_{MRCA}] =4N_e(1-1/n) $ ; ~
$H = \frac{4N_e\mu}{1+4N_e\mu} \approx 4N_e\mu $ ; ~ ; "$\E[T_k] = \frac{2 N_e}{ {k \choose 2} },~~~~\E[T_{MRCA}] =4N_e(1-1/n) $" ; ~
; ; ;
Pairwise diversity \& number of segregating sites ; ~ ; Expectation of $\dNdS$ ; \eqref{eqn:dNDS_C_B}
$\E[\pi] = 4N_e\mu ,~~~~ \E[S] = 4N_e\mu \sum_{k=n}^2 \frac{1}{k-1} $ ; ; $\dNdS = (1-C-B) + 2 N B f_B $ ; ~
Number pairwise diffs. \& segregating sites ; ~ ; Expectation of $\dNdS$ ; \eqref{eqn:dNDS_C_B}
"$\E[\pi] = 4N_e\mu ,~~~~ \E[S] = 4N_e\mu \sum_{k=n}^2 \frac{1}{k-1} $" ; ; $\dNdS = (1-C-B) + 2 N B f_B $ ; ~
; ; ;
Model-based $\fst$ expectations. ; ~ ; Phenotypic covariance between relatives ($i$ \& $j$) ; ~
$\fst = \frac{ T}{ T + 4N_e }, ~~~~F_{IM} = \frac{1}{1 + 4N_I m} $ ; \eqref{eqn:FST_split}, \eqref{eqn:FIM} ; $Cov(X_1,X_2) = 2F_{1,2} V_A + r_2 V_D~~~\textrm{if } V_D>0$ ; ~
Model-based $\fst$ expectations. ; ~ ; Phenotypic covar. between relatives ($i$ \& $j$) ; ~
" $\fst = \frac{ T}{ T + 4N_e }, ~~~~F_{IM} = \frac{1}{1 + 4N_I m} $" ; "\eqref{eqn:FST_split}, \eqref{eqn:FIM}" ; "$Cov(X_1,X_2) = 2F_{1,2} V_A + r_2 V_D~~~\textrm{if } V_D>0$" ; ~
; ; ;
Cross trait ($1$ \& $2$) covariance between relatives ; ~ ; Breeder's equation ; ~
$Cov(X_{1,i},X_{2,j}) = 2 F_{i,j} V_{A,1,2}$ ; ~ ; $R = h^2 S = V_A \beta = \frac{V_A}{\wbar} \frac{\partial \wbar}{\partial \bar{x}} $ ; \eqref{breeders_eqn}, \eqref{eqn:R_beta}, \eqref{eqn:pheno_fitness_landscape}
Cross trait ($1$ \& $2$) covar. between relatives ; ~ ; Breeder's equation ; ~
"$Cov(X_{1,i},X_{2,j}) = 2 F_{i,j} V_{A,1,2}$" ; ~ ; $R = h^2 S = V_A \beta = \frac{V_A}{\wbar} \frac{\partial \wbar}{\partial \bar{x}} $ ; "\eqref{breeders_eqn}, \eqref{eqn:R_beta}, \eqref{eqn:pheno_fitness_landscape} "
; ; ;
Multi-variate breeders equation ; ~ ; Hamilton's Rule ; ~
$\bf{R} = \bf{G} \bf{V}^{-1} \bf{S} = \bf{G} \boldsymbol{ \beta} $ ; \ref{eqn:MV_breeders_eqn} ; $ 2 F_{i,j} B > C$ ; \eqref{eqn:Hamiltons_rule}
$\bf{R} = \bf{G} \bf{V}^{-1} \bf{S} = \bf{G} \boldsymbol{ \beta} $ ; \ref{eqn:MV_breeders_eqn} ; "$ 2 F_{i,j} B > C$" ; \eqref{eqn:Hamiltons_rule}
; ; ;
Frequency next generation (haploid \& diploid). ; ; Frequency change ;
"$p_{t+1} = \frac{w_1 }{\wbar} p_t , ~p_{t+1} = \frac{w_{11} p_t^2 + w_{12} p_tq_t}{\wbar} $" ; "\eqref{eq:deltap_haploid}, \eqref{deltap_dip1}" ; $\Delta p_t=\frac{ (\wbar_1-\wbar_2)}{\wbar} p_t q_t =\frac{1}{2} \frac{p_tq_t}{\wbar} \frac{d \wbar}{dp}$ ; " \eqref{deltap_dip2}, \eqref{deltap_dip3}"
; ; ;
Haploid cumulative change {\tiny (use $\nicefrac{s}{2}$ for diploid case)} ; ; Heterozygote advantage equilibrium ;
"$p_{\tau} \approx \frac{p_0}{p_0 + q_0 e^{-s\tau}},~~~\tau \approx \frac{1}{s} \log \left(\frac{p_{\tau} q_0}{q_{\tau} p_0}\right) $" ; \eqref{eq:haploid_logistic growth}~\eqref{eq:estTauExplSimpl} ; $p_e = \frac{s_2}{s_1+s_2}$ ; \eqref{eqn:het_ad_eq}
; ; ;
Diploid mutation-selection equilibrium ; ; Migration-selection equil. \& cline width. ;
$q_e = \sqrt{\frac{\mu}{s}}~~(\textrm{if }h=0)$ ; "\eqref{eqn:mut_sel_bal}, \eqref{eqn:recess_mut_sel_bal} " ; "$q_{e,1} = \frac{m}{hs},~~~~0.6 \sigma/\sqrt{s} $" ; "\eqref{eqn:mig_sel_eq},~\eqref{eqn:cline_width}"
; ; ;
Selected prob. fixation (haploid \& diploid) ; ; Prob. fixation for weakly selected alleles ($h=\nicefrac{1}{2}$) ;
"$p_F \left(\nicefrac{1}{2N} \right) = 2s, ~~~P_F \left(\nicefrac{1}{2N} \right) \approx 2 h s,\text{ \small , ~$Ns \gg 1$} $" ; \eqref{eqn:prob_fix_strong} \& \eqref{eqn:diploid_escape} ; "$P_F \left(\frac{1}{2N} \right) = \frac{1-e^{-s }}{1-e^{-2Ns}} \text{ {\small ,~ $s<0$ for deleterious allele.} } $" ; \eqref{eqn:new_mut_prob_fixed}
Binary file modified popgen_notes.pdf
Binary file not shown.

0 comments on commit 6cc3438

Please sign in to comment.