Skip to content
/ MTTV Public

Public source code of MTTV (Multi-modal Transformer Using Two-level Visual Features for Fake News Detection)

Notifications You must be signed in to change notification settings

cqu-wb/MTTV

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Public source code of MTTV (Multi-modal Transformer Using Two-level Visual Features for Fake News Detection)

Recommended environment

The environment for our experiment:

python 3.8.8
pytorch 1.9.0+cu102
torchvision 0.2.1
pytorch-pretrained-bert 0.6.2

Dataset

(1) Download dataset

The Fakeddit and Weibo datasets which are preprocessed for our experiments are given in the directory ./data, but do not include any image files.

You need to download the original datasets from the following links to obtain image files.

Fakeddit: https://github.com/entitize/Fakeddit

Weibo: https://github.com/yaqingwang/EANN-KDD18

(2) Extract image features for the two datasets

python extract_image_features.py --dataset_dir ./data/weibo/ --image_dir ${your_weibo_image_dir} --feature_dir ./data/weibo/
python extract_image_features.py --dataset_dir ./data/fakeddit/ --image_dir ${your_fakeddit_image_dir} --feature_dir ./data/fakeddit/

Running

(1) train MTTV on Fakeddit with 6-way labels

python train.py --task fakeddit --label_type 6_way_label --batch_sz 32 --gradient_accumulation_steps 20 --max_epochs 20 --name fakeddit_6_way --bert_model bert-base-uncased --global_image_embeds 5 --region_image_embeds 20 --num_image_embeds 25

(2) train MTTV on Fakeddit with 3-way labels

python train.py --task fakeddit --label_type 3_way_label --batch_sz 32 --gradient_accumulation_steps 20 --max_epochs 20 --name fakeddit_3_way --bert_model bert-base-uncased --global_image_embeds 5 --region_image_embeds 20 --num_image_embeds 25

(3) train MTTV on Fakeddit with 2-way labels

python train.py --task fakeddit --label_type 2_way_label --batch_sz 32 --gradient_accumulation_steps 20 --max_epochs 20 --name fakeddit_2_way --bert_model bert-base-uncased --global_image_embeds 5 --region_image_embeds 20 --num_image_embeds 25

(4) train MTTV on Weibo

python train.py --task weibo --label_type label --batch_sz 32 --gradient_accumulation_steps 1 --max_epochs 30 --seed 1 --name weibo --bert_model bert-base-chinese --global_image_embeds 5 --region_image_embeds 5 --num_image_embeds 10

(5) use scalable classifier on Fakeddit with 6-way labels

Before using scalable classifier, you need to train MTTV on Fakediit with 6-way labels. Then, set checkpoint_dir and checkpoint_name correctly.

Using parameter_tau to set $ \tau $ of scalable classifier.

python scalable_classifier.py --checkpoint_dir ./save/fakeddit_6_way --checkpoint_name checkpoint_10.pt --parameter_tau 1.0

Cite our work

If this code repository is helpful for your research, please cite our paper:

@article{wang2022multi,
  title={Multi-modal transformer using two-level visual features for fake news detection},
  author={Wang, Bin and Feng, Yong and Xiong, Xian-cai and Wang, Yong-heng and Qiang, Bao-hua},
  journal={Applied Intelligence},
  year={2022},
  publisher={Springer}
}

About

Public source code of MTTV (Multi-modal Transformer Using Two-level Visual Features for Fake News Detection)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages