Skip to content

Commit

Permalink
Add script for converting weights from HF
Browse files Browse the repository at this point in the history
  • Loading branch information
tloen committed Mar 16, 2023
1 parent 07f5b68 commit 056b811
Showing 1 changed file with 108 additions and 0 deletions.
108 changes: 108 additions & 0 deletions export_state_dict_checkpoint.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
import os
import json

import torch
from peft import PeftModel, LoraConfig
from transformers import LLaMATokenizer, LLaMAForCausalLM

tokenizer = LLaMATokenizer.from_pretrained("decapoda-research/llama-7b-hf")

base_model = LLaMAForCausalLM.from_pretrained(
"decapoda-research/llama-7b-hf",
load_in_8bit=False,
torch_dtype=torch.float16,
device_map={"": "cpu"},
)

lora_model = PeftModel.from_pretrained(
base_model,
"tloen/alpaca-lora-7b",
device_map={"": "cpu"},
torch_dtype=torch.float16,
)

lora_model.eval() # merge weights

lora_model_sd = lora_model.state_dict()

params = {
"dim": 4096,
"multiple_of": 256,
"n_heads": 32,
"n_layers": 32,
"norm_eps": 1e-06,
"vocab_size": -1,
}
n_layers = params["n_layers"]
n_heads = params["n_heads"]
dim = params["dim"]
dims_per_head = dim // n_heads
base = 10000.0
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))


def permute(w):
return (
w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim)
)


def unpermute(w):
return (
w.view(n_heads, 2, dim // n_heads // 2, dim).transpose(1, 2).reshape(dim, dim)
)


def translate_state_dict_key(k):
k = k.replace("base_model.model.", "")
if k == "model.embed_tokens.weight":
return "tok_embeddings.weight"
elif k == "model.norm.weight":
return "norm.weight"
elif k == "lm_head.weight":
return "output.weight"
elif k.startswith("model.layers."):
layer = k.split(".")[2]
if k.endswith(".self_attn.q_proj.weight"):
return f"layers.{layer}.attention.wq.weight"
elif k.endswith(".self_attn.k_proj.weight"):
return f"layers.{layer}.attention.wk.weight"
elif k.endswith(".self_attn.v_proj.weight"):
return f"layers.{layer}.attention.wv.weight"
elif k.endswith(".self_attn.o_proj.weight"):
return f"layers.{layer}.attention.wo.weight"
elif k.endswith(".mlp.gate_proj.weight"):
return f"layers.{layer}.feed_forward.w1.weight"
elif k.endswith(".mlp.down_proj.weight"):
return f"layers.{layer}.feed_forward.w2.weight"
elif k.endswith(".mlp.up_proj.weight"):
return f"layers.{layer}.feed_forward.w3.weight"
elif k.endswith(".input_layernorm.weight"):
return f"layers.{layer}.attention_norm.weight"
elif k.endswith(".post_attention_layernorm.weight"):
return f"layers.{layer}.ffn_norm.weight"
elif k.endswith("rotary_emb.inv_freq") or "lora" in k:
return None
else:
print(layer, k)
raise NotImplementedError
else:
print(k)
raise NotImplementedError


new_state_dict = {}
for k, v in lora_model_sd.items():
new_k = translate_state_dict_key(k)
if new_k is not None:
if "wq" in new_k or "wk" in new_k:
new_state_dict[new_k] = unpermute(v)
else:
new_state_dict[new_k] = v

os.makedirs("./ckpt", exist_ok=True)

torch.save(new_state_dict, "./ckpt/consolidated.00.pth")

with open("./ckpt/params.json", "w") as f:
json.dump(params, f)

0 comments on commit 056b811

Please sign in to comment.