This repository is the official implementation of Learnable Locality-Sensitive Hashing for Video Anomaly Detection.
- Hardware
- CPU: 48 cores
- RAM: 384 GB
- Disk: 3 TB
- GPU: NVIDIA GeForce 2080 Ti * 4
- Software
- python 3.8.8 (in Anaconda)
- cudatoolkit 11.1.1
- pytorch 1.8.1
- torchvision 0.9.1
- numpy 1.19.2
- scikit-learn 0.24.2
- scipy 1.7.1
- ffmpeg 4.3.2
- opencv 4.5.3.56
- slowfast 1.0 (https://github.com/facebookresearch/SlowFast)
- Avenue: http://www.cse.cuhk.edu.hk/leojia/projects/detectabnormal/dataset.html
- ShanghaiTech: https://github.com/StevenLiuWen/sRNN_TSC_Anomaly_Detection
- Corridor: https://rodrigues-royston.github.io/Multi-timescale_Trajectory_Prediction
- Extract features for the three datasets:
0-FeatureExtraction
. - (Light-)LSH|LLSH:
1-LLSH
. - KNN:
2-KNN
. - K-means:
3-KMeans
.
Please refer to the subdirectories for more details.
TODO