Skip to content

There are more Machine Learning algorithms

Notifications You must be signed in to change notification settings

cyd1/more-ML-algorithm

 
 

Repository files navigation

more-ML-algorithm


这里使用python3语言实现基本machine learning的算法,IDE为jupyter notebook

ch01 : 一元线性回归

   一元线性回归.ipynb :一元线性回归算法的实现
   详解:http://www.cnblogs.com/lliuye/p/9120839.html

ch02 : 多元线性回归

   多元线性回归-LY.ipynb:多元线性回归算法的实现
   utilsLY.py,多项式回归-LY.ipynb:多项式回归算法的实现
   详解:http://www.cnblogs.com/lliuye/p/9120839.html

ch03 : 逻辑回归

   逻辑回归-LY.ipynb :逻辑回归算法的实现
   详解:http://www.cnblogs.com/lliuye/p/9129493.html

ch04 : 神经网络

   NeuralNetwork.ipynb :神经网络算法的实现
   详解:https://www.cnblogs.com/lliuye/p/9183914.html

ch05 : 机器学习系统设计

   diagnoseLY.ipynb :机器学习系统设计的实现

ch06 : SVM

   linear.ipynbb :基于线性核(无核)SVM算法的实现
   non-linear.ipynb :基于三种核(线性核、多项式核、高斯核)SVM算法的实现与比较
   multi-classes.ipynb :多分类SVM算法的实现

ch07 : k-means

   k-means.ipynb:k-means算法的实现
   详解:http://www.cnblogs.com/lliuye/p/9144312.html

ch08 : PCA

   PCA.ipynb :PCA的应用
   详解:http://www.cnblogs.com/lliuye/p/9156763.html

ch09 : 异常检测

   anomaly detection.ipynb :异常检测算法的实现
   详解:http://www.cnblogs.com/lliuye/p/9174453.html

ch10 : 推荐算法

   recommend_system.ipynb:基于协同过滤的推荐算法的实现

About

There are more Machine Learning algorithms

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 99.8%
  • Python 0.2%