forked from xmu-xiaoma666/External-Attention-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
e47894c
commit 7d0e2bd
Showing
5 changed files
with
137 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
import numpy as np | ||
import torch | ||
from torch import nn | ||
from torch.nn import init | ||
|
||
|
||
|
||
class EMSA(nn.Module): | ||
|
||
def __init__(self, d_model, d_k, d_v, h,dropout=.1,H=7,W=7,ratio=3,apply_transform=True): | ||
|
||
super(EMSA, self).__init__() | ||
self.H=H | ||
self.W=W | ||
self.fc_q = nn.Linear(d_model, h * d_k) | ||
self.fc_k = nn.Linear(d_model, h * d_k) | ||
self.fc_v = nn.Linear(d_model, h * d_v) | ||
self.fc_o = nn.Linear(h * d_v, d_model) | ||
self.dropout=nn.Dropout(dropout) | ||
|
||
self.ratio=ratio | ||
if(self.ratio>1): | ||
self.sr=nn.Sequential() | ||
self.sr_conv=nn.Conv2d(d_model,d_model,kernel_size=ratio+1,stride=ratio,padding=ratio//2,groups=d_model) | ||
self.sr_ln=nn.LayerNorm(d_model) | ||
|
||
self.apply_transform=apply_transform and h>1 | ||
if(self.apply_transform): | ||
self.transform=nn.Sequential() | ||
self.transform.add_module('conv',nn.Conv2d(h,h,kernel_size=1,stride=1)) | ||
self.transform.add_module('softmax',nn.Softmax(-1)) | ||
self.transform.add_module('in',nn.InstanceNorm2d(h)) | ||
|
||
self.d_model = d_model | ||
self.d_k = d_k | ||
self.d_v = d_v | ||
self.h = h | ||
|
||
self.init_weights() | ||
|
||
|
||
def init_weights(self): | ||
for m in self.modules(): | ||
if isinstance(m, nn.Conv2d): | ||
init.kaiming_normal_(m.weight, mode='fan_out') | ||
if m.bias is not None: | ||
init.constant_(m.bias, 0) | ||
elif isinstance(m, nn.BatchNorm2d): | ||
init.constant_(m.weight, 1) | ||
init.constant_(m.bias, 0) | ||
elif isinstance(m, nn.Linear): | ||
init.normal_(m.weight, std=0.001) | ||
if m.bias is not None: | ||
init.constant_(m.bias, 0) | ||
|
||
def forward(self, queries, keys, values, attention_mask=None, attention_weights=None): | ||
|
||
b_s, nq ,c = queries.shape | ||
nk = keys.shape[1] | ||
|
||
q = self.fc_q(queries).view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3) # (b_s, h, nq, d_k) | ||
|
||
if(self.ratio>1): | ||
x=queries.permute(0,2,1).view(b_s,c,self.H,self.W) #bs,c,H,W | ||
x=self.sr_conv(x) #bs,c,h,w | ||
x=x.contiguous().view(b_s,c,-1).permute(0,2,1) #bs,n',c | ||
x=self.sr_ln(x) | ||
k = self.fc_k(x).view(b_s, -1, self.h, self.d_k).permute(0, 2, 3, 1) # (b_s, h, d_k, n') | ||
v = self.fc_v(x).view(b_s, -1, self.h, self.d_v).permute(0, 2, 1, 3) # (b_s, h, n', d_v) | ||
else: | ||
k = self.fc_k(keys).view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1) # (b_s, h, d_k, nk) | ||
v = self.fc_v(values).view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3) # (b_s, h, nk, d_v) | ||
|
||
if(self.apply_transform): | ||
att = torch.matmul(q, k) / np.sqrt(self.d_k) # (b_s, h, nq, n') | ||
att = self.transform(att) # (b_s, h, nq, n') | ||
else: | ||
att = torch.matmul(q, k) / np.sqrt(self.d_k) # (b_s, h, nq, n') | ||
att = torch.softmax(att, -1) # (b_s, h, nq, n') | ||
|
||
|
||
if attention_weights is not None: | ||
att = att * attention_weights | ||
if attention_mask is not None: | ||
att = att.masked_fill(attention_mask, -np.inf) | ||
|
||
att=self.dropout(att) | ||
|
||
out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s, nq, self.h * self.d_v) # (b_s, nq, h*d_v) | ||
out = self.fc_o(out) # (b_s, nq, d_model) | ||
return out | ||
|
||
|
||
if __name__ == '__main__': | ||
input=torch.randn(50,64,512) | ||
emsa = EMSA(d_model=512, d_k=512, d_v=512, h=8,H=8,W=8,ratio=2,apply_transform=True) | ||
output=emsa(input,input,input) | ||
print(output.shape) | ||
|
||
|
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,16 +1,12 @@ | ||
from rep.acnet import ACNet | ||
from attention.EMSA import EMSA | ||
import torch | ||
from torch import nn | ||
from torch.nn import functional as F | ||
|
||
if __name__ == '__main__': | ||
input=torch.randn(50,512,49,49) | ||
acnet=ACNet(512,512) | ||
acnet.eval() | ||
out=acnet(input) | ||
acnet._switch_to_deploy() | ||
out2=acnet(input) | ||
print('difference:') | ||
print(((out2-out)**2).sum()) | ||
input=torch.randn(50,64,512) | ||
emsa = EMSA(d_model=512, d_k=512, d_v=512, h=8,H=8,W=8,ratio=2,apply_transform=True) | ||
output=emsa(input,input,input) | ||
print(output.shape) | ||
|
||
|