Skip to content

自身学习的安全数据科学和算法的学习资料

Notifications You must be signed in to change notification settings

d0l1u/AI-Security-Learning

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 

Repository files navigation

AI-Security-Learning

自身学习的安全数据科学和ai安全算法的学习资料

项目地址: https://github.com/0xMJ/AI-Security-Learning

最近更新日期为:2019/04/26

同步更新于: Mang0: AI-Security-Learning

[TOC]

新增:

机器学习与安全课程

AI应用攻击篇

用AI来做应用安全攻击

自动化渗透

验证码识别

自动化鱼叉式钓鱼攻击

自动化恶意软件样本生成

自动化漏洞挖掘

通过舆情分析和精准广告投放来影响政治事件

AI应用防御篇

用AI来做应用安全防护

UEBA

Web安全检测

检测web攻击

Webshell检测

XSS

弱口令

用户异常行为检测

DDOS

恶意url检测

DGA

恶意流量检测

恶意代码

钓鱼检测

APT检测

DNS隐蔽信道检测

业务安全检测

安全运营

杂项

AI本身安全

AI模型安全

逃逸攻击:

AI框架安全

AI数据安全

机器学习面临的数据污染问题。通过原理说明和代码实例,展示数据污染的特点和攻击效果。

AI代码安全

模型代码的漏洞挖掘和利用

AI保护AI

攻击算法

DeepFool对抗算法

FGSM算法:机器学习对抗算法中的FGSM算法。通过算法说明和代码实例,展示FGSM算法的特点和攻击效果。

对抗样本

安全算法

机器学习异常检测算法

杂项

数据

http://www.secrepo.com/

1、Samples of Security Related Dats

2、DARPA Intrusion Detection Data Sets

3、Stratosphere IPS Data Sets

4、Open Data Sets

5、Data Capture from National Security Agency

6、The ADFA Intrusion Detection Data Sets

7、NSL-KDD Data Sets

8、Malicious URLs Data Sets

9、Multi-Source Cyber-Security Events

10、Malware Training Sets: A machine learning dataset for everyone

资源

优秀Github推荐

优秀博客

优秀书籍

思考

学习机器学习

第一步:学习编程

实话说,计算机体系很大,除了语言、数据机构、算法之外,计算机体系结构、操作系统、网络、数据库等等领域庞大。但不管怎样,学习如何编写代码、如何编程是必备的。如何学习编程呢?学完数据结构、算法等知识后,如何提高编程能力呢?上LeetCode刷题成为很多人的不二之选。 推荐教程:python廖雪峰

第二步:扎实数学

数学是搞数据科学的必备基础,数学不扎实,机器学习里很多原理、推导、公式便无法理解透彻,比如单单一个SVM就涉及到求导、凸优化等数学知识。所以如果数学忘了,很有必要复习并重新扎实数学基础。 涵盖内容:微积分、数理统计与概率论、矩阵、凸优化 推荐书籍:数理统计学简史、矩阵分析与应用by张贤达、凸优化(Convex Optimization) 推荐课程:机器学习中的数学

李航《统计学习方法》

第三步:掌握适合数据科学的Python

python在当今的数据分析很热,广泛应用于金融、电商等领域的大数据分析,也非常适合数据工作者利用它处理数据,所以Python在数据领域应用越来越广泛。学习Python的几个机器学习工具——pandas,numpy,seaborn,sklearn。 推荐教程:《利用python进行数据分析》、《Python爬虫》

Python 和数据科学

第四步:开始学习机器学习

机器学习技术在很多领域应用广泛,包括在数据挖掘、搜索、推荐、广告、自然语言处理等等中。所以学好机器学习,是搞更多应用领域的前提条件。此外,学习机器学习,不单单只是学习一个个模型、算法就足够,因为实际的机器学习工作中,分析问题、处理数据、处理特征占绝大部分工作。所以不要以为看到一个课程涵盖许许多多的模型/算法就以为捡到了宝,看一个ML课程有没有工业实战,最快判断的标准之一是看它讲不讲以及是否能讲好特征工程、模型调优。 推荐书籍:PRML 推荐课程:吴恩达《机器学习》公开课

原课程地址:coursera.org/course/ml

https://www.coursera.org/learn/machine-learning/home/welcome

笔记:

https://github.com/fengdu78/Coursera-ML-AndrewNg-Notes

https://github.com/scruel/ML-AndrewNg-Notes

周志华西瓜书:

周志华《机器学习》阅读笔记

第五步:再进一步之学习DL

得益于计算机越发强大的计算能力,神经网络的加强版深度学习(权且容许我这么不专业的叫法)越发火热,从AlphaGo、无人驾驶再到最近的AlphaGo 2.0横扫中日韩顶级骑手,AI可谓出尽了风头,在这个人工智能与大数据的时代,不学点AI,都不好意思出门跟人打招呼说我是搞计算机技术的了。 推荐课程:吴恩达《深度学习》公开课

原课程地址:www.deeplearning.ai

笔记:

https://github.com/fengdu78/deeplearning_ai_books=http://www.ai-start.com/dl2017/ http://kyonhuang.top/Andrew-Ng-Deep-Learning-notes/#/ http://binweber.top/tags/ML/ https://zhuanlan.zhihu.com/p/35333489 http://dl-notes.imshuai.com/

第六步:做实验及上kaggle实战

1、纸上得来终觉浅、绝知此事要躬行。理论学习再多最终还是要实战。为降低门槛起见,你可以从做一个一个有趣的深度学习实验开始,比如学梵高作画、自动玩flappy bird等等。然后,在kaggle上多刷刷一些数据竞赛项目,学习特征工程和别人的代码。

2、学习大规模数据处理——spark hadoop storm

第七步:实习或工作

如果你是想做数据挖掘、计算机视觉、自然语言处理,可以继续学相关的课程。此外,很多经典最新论文值得一读。如果足够了,那就正式出山到实际江湖上闯一闯吧:找份工作,干一把! 推荐公司:有资源、有数据的偏大一点的公司

推荐文章

资源

https://pan.baidu.com/s/1k64FTLw1Gv87WbYqviM45Q#list/path=%2F提取密码:bs8w

About

自身学习的安全数据科学和算法的学习资料

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published