Skip to content

daanmomo/fastBPE

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 

Repository files navigation

fastBPE

C++ implementation of Neural Machine Translation of Rare Words with Subword Units, with Python API.

Installation

Compile with:

g++ -std=c++11 -pthread -O3 fastBPE/main.cc -IfastBPE -o fast

Usage:

List commands

./fast
usage: fastbpe <command> <args>

The commands supported by fastBPE are:

getvocab input1 [input2]             extract the vocabulary from one or two text files
learnbpe nCodes input1 [input2]      learn BPE codes from one or two text files
applybpe output input codes [vocab]  apply BPE codes to a text file
applybpe_stream codes [vocab]        apply BPE codes to stdin and outputs to stdout

fastBPE also supports stdin inputs. For instance, these two commands are equivalent:

./fast getvocab text > vocab
cat text | ./fast getvocab - > vocab

But the first one will memory map the input file to read it efficiently, which can be more than twice faster than stdin on very large files. Similarly, these two commands are equivalent:

./fast applybpe output input codes vocab
cat input | ./fast applybpe_stream codes vocab > output

Although the first one will be significantly faster on large datasets, as it uses multi-threading to pre-compute the BPE splits of all words in the input file.

Learn codes

./fast learnbpe 40000 train.de train.en > codes

Apply codes to train

./fast applybpe train.de.40000 train.de codes
./fast applybpe train.en.40000 train.en codes

Get train vocabulary

./fast getvocab train.de.40000 > vocab.de.40000
./fast getvocab train.en.40000 > vocab.en.40000

Apply codes to valid and test

./fast applybpe valid.de.40000 valid.de codes vocab.de.40000
./fast applybpe valid.en.40000 valid.en codes vocab.en.40000
./fast applybpe test.de.40000  test.de  codes vocab.de.40000
./fast applybpe test.en.40000  test.en  codes vocab.en.40000

Python API

To install the Python API, simply run:

python setup.py install

Call the API using:

import fastBPE

bpe = fastBPE.fastBPE(codes_path, vocab_path)
bpe.apply(["Roasted barramundi fish", "Centrally managed over a client-server architecture"])

>> ['Ro@@ asted barr@@ am@@ un@@ di fish', 'Centr@@ ally managed over a cli@@ ent-@@ server architecture']

About

Fast BPE

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 94.8%
  • Python 5.2%