Skip to content

Commit

Permalink
Initial files
Browse files Browse the repository at this point in the history
  • Loading branch information
MichalDanielDobrzanski committed Jul 29, 2016
0 parents commit 0edab8e
Show file tree
Hide file tree
Showing 10 changed files with 1,082 additions and 0 deletions.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
__pycache__
60 changes: 60 additions & 0 deletions expand_mnist.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
"""expand_mnist.py
~~~~~~~~~~~~~~~~~~
Take the 50,000 MNIST training images, and create an expanded set of
250,000 images, by displacing each training image up, down, left and
right, by one pixel. Save the resulting file to
../data/mnist_expanded.pkl.gz.
Note that this program is memory intensive, and may not run on small
systems.
"""

from __future__ import print_function

#### Libraries

# Standard library
import cPickle
import gzip
import os.path
import random

# Third-party libraries
import numpy as np

print("Expanding the MNIST training set")

if os.path.exists("../data/mnist_expanded.pkl.gz"):
print("The expanded training set already exists. Exiting.")
else:
f = gzip.open("../data/mnist.pkl.gz", 'rb')
training_data, validation_data, test_data = cPickle.load(f)
f.close()
expanded_training_pairs = []
j = 0 # counter
for x, y in zip(training_data[0], training_data[1]):
expanded_training_pairs.append((x, y))
image = np.reshape(x, (-1, 28))
j += 1
if j % 1000 == 0: print("Expanding image number", j)
# iterate over data telling us the details of how to
# do the displacement
for d, axis, index_position, index in [
(1, 0, "first", 0),
(-1, 0, "first", 27),
(1, 1, "last", 0),
(-1, 1, "last", 27)]:
new_img = np.roll(image, d, axis)
if index_position == "first":
new_img[index, :] = np.zeros(28)
else:
new_img[:, index] = np.zeros(28)
expanded_training_pairs.append((np.reshape(new_img, 784), y))
random.shuffle(expanded_training_pairs)
expanded_training_data = [list(d) for d in zip(*expanded_training_pairs)]
print("Saving expanded data. This may take a few minutes.")
f = gzip.open("../data/mnist_expanded.pkl.gz", "w")
cPickle.dump((expanded_training_data, validation_data, test_data), f)
f.close()
Binary file added mnist.pkl.gz
Binary file not shown.
64 changes: 64 additions & 0 deletions mnist_average_darkness.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
"""
mnist_average_darkness
~~~~~~~~~~~~~~~~~~~~~~
A naive classifier for recognizing handwritten digits from the MNIST
data set. The program classifies digits based on how dark they are
--- the idea is that digits like "1" tend to be less dark than digits
like "8", simply because the latter has a more complex shape. When
shown an image the classifier returns whichever digit in the training
data had the closest average darkness.
The program works in two steps: first it trains the classifier, and
then it applies the classifier to the MNIST test data to see how many
digits are correctly classified.
Needless to say, this isn't a very good way of recognizing handwritten
digits! Still, it's useful to show what sort of performance we get
from naive ideas."""

#### Libraries
# Standard library
from collections import defaultdict

# My libraries
import mnist_loader

def main():
training_data, validation_data, test_data = mnist_loader.load_data()
# training phase: compute the average darknesses for each digit,
# based on the training data
avgs = avg_darknesses(training_data)
# testing phase: see how many of the test images are classified
# correctly
num_correct = sum(int(guess_digit(image, avgs) == digit)
for image, digit in zip(test_data[0], test_data[1]))
print "Baseline classifier using average darkness of image."
print "%s of %s values correct." % (num_correct, len(test_data[1]))

def avg_darknesses(training_data):
""" Return a defaultdict whose keys are the digits 0 through 9.
For each digit we compute a value which is the average darkness of
training images containing that digit. The darkness for any
particular image is just the sum of the darknesses for each pixel."""
digit_counts = defaultdict(int)
darknesses = defaultdict(float)
for image, digit in zip(training_data[0], training_data[1]):
digit_counts[digit] += 1
darknesses[digit] += sum(image)
avgs = defaultdict(float)
for digit, n in digit_counts.iteritems():
avgs[digit] = darknesses[digit] / n
return avgs

def guess_digit(image, avgs):
"""Return the digit whose average darkness in the training data is
closest to the darkness of ``image``. Note that ``avgs`` is
assumed to be a defaultdict whose keys are 0...9, and whose values
are the corresponding average darknesses across the training data."""
darkness = sum(image)
distances = {k: abs(v-darkness) for k, v in avgs.iteritems()}
return min(distances, key=distances.get)

if __name__ == "__main__":
main()
78 changes: 78 additions & 0 deletions mnist_loader.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
# %load mnist_loader.py
"""
mnist_loader
~~~~~~~~~~~~
A library to load the MNIST image data. For details of the data
structures that are returned, see the doc strings for ``load_data``
and ``load_data_wrapper``. In practice, ``load_data_wrapper`` is the
function usually called by our neural network code.
"""

#### Libraries
# Standard library
import pickle
import gzip

# Third-party libraries
import numpy as np

def load_data():
"""Return the MNIST data as a tuple containing the training data,
the validation data, and the test data.
The ``training_data`` is returned as a tuple with two entries.
The first entry contains the actual training images. This is a
numpy ndarray with 50,000 entries. Each entry is, in turn, a
numpy ndarray with 784 values, representing the 28 * 28 = 784
pixels in a single MNIST image.
The second entry in the ``training_data`` tuple is a numpy ndarray
containing 50,000 entries. Those entries are just the digit
values (0...9) for the corresponding images contained in the first
entry of the tuple.
The ``validation_data`` and ``test_data`` are similar, except
each contains only 10,000 images.
This is a nice data format, but for use in neural networks it's
helpful to modify the format of the ``training_data`` a little.
That's done in the wrapper function ``load_data_wrapper()``, see
below.
"""
f = gzip.open('mnist.pkl.gz', 'rb')
training_data, validation_data, test_data = pickle.load(f, encoding="latin1")
f.close()
return (training_data, validation_data, test_data)

def load_data_wrapper():
"""Return a tuple containing ``(training_data, validation_data,
test_data)``. Based on ``load_data``, but the format is more
convenient for use in our implementation of neural networks.
In particular, ``training_data`` is a list containing 50,000
2-tuples ``(x, y)``. ``x`` is a 784-dimensional numpy.ndarray
containing the input image. ``y`` is a 10-dimensional
numpy.ndarray representing the unit vector corresponding to the
correct digit for ``x``.
``validation_data`` and ``test_data`` are lists containing 10,000
2-tuples ``(x, y)``. In each case, ``x`` is a 784-dimensional
numpy.ndarry containing the input image, and ``y`` is the
corresponding classification, i.e., the digit values (integers)
corresponding to ``x``.
Obviously, this means we're using slightly different formats for
the training data and the validation / test data. These formats
turn out to be the most convenient for use in our neural network
code."""
tr_d, va_d, te_d = load_data()
training_inputs = [np.reshape(x, (784, 1)) for x in tr_d[0]]
training_results = [vectorized_result(y) for y in tr_d[1]]
training_data = zip(training_inputs, training_results)
validation_inputs = [np.reshape(x, (784, 1)) for x in va_d[0]]
validation_data = zip(validation_inputs, va_d[1])
test_inputs = [np.reshape(x, (784, 1)) for x in te_d[0]]
test_data = zip(test_inputs, te_d[1])
return (training_data, validation_data, test_data)

def vectorized_result(j):
"""Return a 10-dimensional unit vector with a 1.0 in the jth
position and zeroes elsewhere. This is used to convert a digit
(0...9) into a corresponding desired output from the neural
network."""
e = np.zeros((10, 1))
e[j] = 1.0
return e
28 changes: 28 additions & 0 deletions mnist_svm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
"""
mnist_svm
~~~~~~~~~
A classifier program for recognizing handwritten digits from the MNIST
data set, using an SVM classifier."""

#### Libraries
# My libraries
import mnist_loader

# Third-party libraries
from sklearn import svm

def svm_baseline():
training_data, validation_data, test_data = mnist_loader.load_data()
# train
clf = svm.SVC()
clf.fit(training_data[0], training_data[1])
# test
predictions = [int(a) for a in clf.predict(test_data[0])]
num_correct = sum(int(a == y) for a, y in zip(predictions, test_data[1]))
print "Baseline classifier using an SVM."
print "%s of %s values correct." % (num_correct, len(test_data[1]))

if __name__ == "__main__":
svm_baseline()

149 changes: 149 additions & 0 deletions network.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,149 @@
# %load network.py

"""
network.py
~~~~~~~~~~
IT WORKS
A module to implement the stochastic gradient descent learning
algorithm for a feedforward neural network. Gradients are calculated
using backpropagation. Note that I have focused on making the code
simple, easily readable, and easily modifiable. It is not optimized,
and omits many desirable features.
"""

#### Libraries
# Standard library
import random

# Third-party libraries
import numpy as np

class Network(object):

def __init__(self, sizes):
"""The list ``sizes`` contains the number of neurons in the
respective layers of the network. For example, if the list
was [2, 3, 1] then it would be a three-layer network, with the
first layer containing 2 neurons, the second layer 3 neurons,
and the third layer 1 neuron. The biases and weights for the
network are initialized randomly, using a Gaussian
distribution with mean 0, and variance 1. Note that the first
layer is assumed to be an input layer, and by convention we
won't set any biases for those neurons, since biases are only
ever used in computing the outputs from later layers."""
self.num_layers = len(sizes)
self.sizes = sizes
self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
self.weights = [np.random.randn(y, x)
for x, y in zip(sizes[:-1], sizes[1:])]

def feedforward(self, a):
"""Return the output of the network if ``a`` is input."""
for b, w in zip(self.biases, self.weights):
a = sigmoid(np.dot(w, a)+b)
return a

def SGD(self, training_data, epochs, mini_batch_size, eta,
test_data=None):
"""Train the neural network using mini-batch stochastic
gradient descent. The ``training_data`` is a list of tuples
``(x, y)`` representing the training inputs and the desired
outputs. The other non-optional parameters are
self-explanatory. If ``test_data`` is provided then the
network will be evaluated against the test data after each
epoch, and partial progress printed out. This is useful for
tracking progress, but slows things down substantially."""

training_data = list(training_data)
n = len(training_data)

if test_data:
test_data = list(test_data)
n_test = len(test_data)

for j in range(epochs):
random.shuffle(training_data)
mini_batches = [
training_data[k:k+mini_batch_size]
for k in range(0, n, mini_batch_size)]
for mini_batch in mini_batches:
self.update_mini_batch(mini_batch, eta)
if test_data:
print("Epoch {} : {} / {}".format(j,self.evaluate(test_data),n_test));
else:
print("Epoch {} complete".format(j))

def update_mini_batch(self, mini_batch, eta):
"""Update the network's weights and biases by applying
gradient descent using backpropagation to a single mini batch.
The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``
is the learning rate."""
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
for x, y in mini_batch:
delta_nabla_b, delta_nabla_w = self.backprop(x, y)
nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
self.weights = [w-(eta/len(mini_batch))*nw
for w, nw in zip(self.weights, nabla_w)]
self.biases = [b-(eta/len(mini_batch))*nb
for b, nb in zip(self.biases, nabla_b)]

def backprop(self, x, y):
"""Return a tuple ``(nabla_b, nabla_w)`` representing the
gradient for the cost function C_x. ``nabla_b`` and
``nabla_w`` are layer-by-layer lists of numpy arrays, similar
to ``self.biases`` and ``self.weights``."""
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
# feedforward
activation = x
activations = [x] # list to store all the activations, layer by layer
zs = [] # list to store all the z vectors, layer by layer
for b, w in zip(self.biases, self.weights):
z = np.dot(w, activation)+b
zs.append(z)
activation = sigmoid(z)
activations.append(activation)
# backward pass
delta = self.cost_derivative(activations[-1], y) * \
sigmoid_prime(zs[-1])
nabla_b[-1] = delta
nabla_w[-1] = np.dot(delta, activations[-2].transpose())
# Note that the variable l in the loop below is used a little
# differently to the notation in Chapter 2 of the book. Here,
# l = 1 means the last layer of neurons, l = 2 is the
# second-last layer, and so on. It's a renumbering of the
# scheme in the book, used here to take advantage of the fact
# that Python can use negative indices in lists.
for l in range(2, self.num_layers):
z = zs[-l]
sp = sigmoid_prime(z)
delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
nabla_b[-l] = delta
nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
return (nabla_b, nabla_w)

def evaluate(self, test_data):
"""Return the number of test inputs for which the neural
network outputs the correct result. Note that the neural
network's output is assumed to be the index of whichever
neuron in the final layer has the highest activation."""
test_results = [(np.argmax(self.feedforward(x)), y)
for (x, y) in test_data]
return sum(int(x == y) for (x, y) in test_results)

def cost_derivative(self, output_activations, y):
"""Return the vector of partial derivatives \partial C_x /
\partial a for the output activations."""
return (output_activations-y)

#### Miscellaneous functions
def sigmoid(z):
"""The sigmoid function."""
return 1.0/(1.0+np.exp(-z))

def sigmoid_prime(z):
"""Derivative of the sigmoid function."""
return sigmoid(z)*(1-sigmoid(z))
Loading

0 comments on commit 0edab8e

Please sign in to comment.