forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Misc] Qwen2.5 VL support LoRA (vllm-project#13261)
- Loading branch information
Showing
4 changed files
with
130 additions
and
63 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,83 +1,143 @@ | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from typing import List | ||
from dataclasses import dataclass | ||
from typing import Dict, List, Optional | ||
|
||
import pytest | ||
from packaging.version import Version | ||
from transformers import __version__ as TRANSFORMERS_VERSION | ||
|
||
import vllm | ||
from vllm.assets.image import ImageAsset | ||
from vllm.lora.request import LoRARequest | ||
from vllm.platforms import current_platform | ||
|
||
MODEL_PATH = "Qwen/Qwen2-VL-2B-Instruct" | ||
|
||
PROMPT_TEMPLATE = ( | ||
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>" | ||
"\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>" | ||
"What is in the image?<|im_end|>\n" | ||
"<|im_start|>assistant\n") | ||
@dataclass | ||
class TestConfig: | ||
model_path: str | ||
lora_path: str | ||
max_num_seqs: int = 2 | ||
max_loras: int = 2 | ||
max_lora_rank: int = 16 | ||
max_model_len: int = 4096 | ||
mm_processor_kwargs: Optional[Dict[str, int]] = None | ||
|
||
def __post_init__(self): | ||
if self.mm_processor_kwargs is None: | ||
self.mm_processor_kwargs = { | ||
"min_pixels": 28 * 28, | ||
"max_pixels": 1280 * 28 * 28, | ||
} | ||
|
||
|
||
class Qwen2VLTester: | ||
"""Test helper for Qwen2 VL models with LoRA""" | ||
|
||
PROMPT_TEMPLATE = ( | ||
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>" | ||
"\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>" | ||
"What is in the image?<|im_end|>\n" | ||
"<|im_start|>assistant\n") | ||
|
||
def __init__(self, config: TestConfig): | ||
self.config = config | ||
self.llm = self._initialize_llm() | ||
|
||
def _initialize_llm(self) -> vllm.LLM: | ||
"""Initialize the LLM with given configuration""" | ||
return vllm.LLM( | ||
model=self.config.model_path, | ||
max_num_seqs=self.config.max_num_seqs, | ||
enable_lora=True, | ||
max_loras=self.config.max_loras, | ||
max_lora_rank=self.config.max_lora_rank, | ||
trust_remote_code=True, | ||
mm_processor_kwargs=self.config.mm_processor_kwargs, | ||
max_model_len=self.config.max_model_len, | ||
) | ||
|
||
def run_test(self, | ||
images: List[ImageAsset], | ||
expected_outputs: List[str], | ||
lora_id: Optional[int] = None, | ||
temperature: float = 0, | ||
max_tokens: int = 5) -> List[str]: | ||
|
||
sampling_params = vllm.SamplingParams( | ||
temperature=temperature, | ||
max_tokens=max_tokens, | ||
) | ||
inputs = [{ | ||
"prompt": self.PROMPT_TEMPLATE, | ||
"multi_modal_data": { | ||
"image": asset.pil_image | ||
}, | ||
} for asset in images] | ||
|
||
lora_request = LoRARequest(str(lora_id), lora_id, | ||
self.config.lora_path) | ||
outputs = self.llm.generate(inputs, | ||
sampling_params, | ||
lora_request=lora_request) | ||
generated_texts = [ | ||
output.outputs[0].text.strip() for output in outputs | ||
] | ||
|
||
IMAGE_ASSETS = [ | ||
# Validate outputs | ||
for generated, expected in zip(generated_texts, expected_outputs): | ||
assert expected.startswith( | ||
generated), f"Generated text {generated} doesn't " | ||
f"match expected pattern {expected}" | ||
|
||
return generated_texts | ||
|
||
|
||
TEST_IMAGES = [ | ||
ImageAsset("stop_sign"), | ||
ImageAsset("cherry_blossom"), | ||
] | ||
|
||
# After fine-tuning with LoRA, all generated content should start begin `A`. | ||
EXPECTED_OUTPUT = [ | ||
EXPECTED_OUTPUTS = [ | ||
"A red stop sign stands prominently in the foreground, with a traditional Chinese gate and a black SUV in the background, illustrating a blend of modern and cultural elements.", # noqa: E501 | ||
"A majestic skyscraper stands tall, partially obscured by a vibrant canopy of cherry blossoms, against a clear blue sky.", # noqa: E501 | ||
] | ||
|
||
|
||
def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> List[str]: | ||
sampling_params = vllm.SamplingParams( | ||
temperature=0, | ||
max_tokens=5, | ||
) | ||
|
||
inputs = [{ | ||
"prompt": PROMPT_TEMPLATE, | ||
"multi_modal_data": { | ||
"image": asset.pil_image | ||
}, | ||
} for asset in IMAGE_ASSETS] | ||
|
||
outputs = llm.generate( | ||
inputs, | ||
sampling_params, | ||
lora_request=LoRARequest(str(lora_id), lora_id, lora_path) | ||
if lora_id else None, | ||
) | ||
# Print the outputs. | ||
generated_texts: List[str] = [] | ||
for output in outputs: | ||
generated_text = output.outputs[0].text.strip() | ||
generated_texts.append(generated_text) | ||
print(f"Generated text: {generated_text!r}") | ||
return generated_texts | ||
QWEN2VL_MODEL_PATH = "Qwen/Qwen2-VL-2B-Instruct" | ||
QWEN25VL_MODEL_PATH = "Qwen/Qwen2.5-VL-3B-Instruct" | ||
|
||
|
||
@pytest.mark.xfail( | ||
current_platform.is_rocm(), | ||
reason="Qwen2-VL dependency xformers incompatible with ROCm") | ||
def test_qwen2vl_lora(qwen2vl_lora_files): | ||
llm = vllm.LLM( | ||
MODEL_PATH, | ||
max_num_seqs=2, | ||
enable_lora=True, | ||
max_loras=2, | ||
max_lora_rank=16, | ||
trust_remote_code=True, | ||
mm_processor_kwargs={ | ||
"min_pixels": 28 * 28, | ||
"max_pixels": 1280 * 28 * 28, | ||
}, | ||
max_model_len=4096, | ||
) | ||
output1 = do_sample(llm, qwen2vl_lora_files, lora_id=1) | ||
for i in range(len(EXPECTED_OUTPUT)): | ||
assert EXPECTED_OUTPUT[i].startswith(output1[i]) | ||
|
||
output2 = do_sample(llm, qwen2vl_lora_files, lora_id=2) | ||
for i in range(len(EXPECTED_OUTPUT)): | ||
assert EXPECTED_OUTPUT[i].startswith(output2[i]) | ||
"""Test Qwen 2.0 VL model with LoRA""" | ||
config = TestConfig(model_path=QWEN2VL_MODEL_PATH, | ||
lora_path=qwen2vl_lora_files) | ||
tester = Qwen2VLTester(config) | ||
|
||
# Test with different LoRA IDs | ||
for lora_id in [1, 2]: | ||
tester.run_test(TEST_IMAGES, | ||
expected_outputs=EXPECTED_OUTPUTS, | ||
lora_id=lora_id) | ||
|
||
|
||
@pytest.mark.xfail( | ||
current_platform.is_rocm(), | ||
reason="Qwen2.5-VL dependency xformers incompatible with ROCm", | ||
) | ||
@pytest.mark.skipif( | ||
Version(TRANSFORMERS_VERSION) < Version("4.49.0"), | ||
reason="Qwen2.5-VL require transformers version no lower than 4.49.0", | ||
) | ||
def test_qwen25vl_lora(qwen25vl_lora_files): | ||
"""Test Qwen 2.5 VL model with LoRA""" | ||
config = TestConfig(model_path=QWEN25VL_MODEL_PATH, | ||
lora_path=qwen25vl_lora_files) | ||
tester = Qwen2VLTester(config) | ||
|
||
# Test with different LoRA IDs | ||
for lora_id in [1, 2]: | ||
tester.run_test(TEST_IMAGES, | ||
expected_outputs=EXPECTED_OUTPUTS, | ||
lora_id=lora_id) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters