Skip to content
/ tf2.0 Public

this repo is for learning how to use tensorflow 2.0

Notifications You must be signed in to change notification settings

davidiwu/tf2.0

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

39 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

About this repo:

  • this repo is for learning how to use tensorflow 2.0
  • each file demos a concept or a task, can run independently and produce results
  • demos here can run on a modest PC with a GPU

在windows系统上安装tensorflow

先检查以下前置条件是否满足:

  • Check your Windows system, should be Windows 7 or later, and 64-bit operating systems.

  • TensorFlow was built and tested on 64-bit laptop/desktop operating system.

  • Download and install the version 3.6 of Python (建议使用 3.6 的版本) for Windows.

  • Should use and download 64bit version of Python

安装tensorflow 2.0 的 GPU 版本

  • 安装CUDA 10.0:

    先检查自己CUDA版本:

      >>> nvcc --version
    

    如果不是10.0的版本,则需要先下载并安装好。

    下载安装好CUDA10.0后,有可能发现系统找不到了显卡,这时候重新安装显卡的驱动即可。

  • 安装CuDNN 7.6.0:

    如果CuDNN 的版本不是7.6.0,在运行时可能会碰到下面的问题:

      Loaded runtime CuDNN library: 7.4.1 but source was compiled with: 7.6.0.  
      CuDNN library major and minor version needs to match or have higher minor version in case of CuDNN 7.0 or later version. 
    

    去下面的地址下载正确的版本:

      https://developer.nvidia.com/rdp/cudnn-archive
    

    然后只需要把下载后的压缩文件解压缩,分别将cuda/include、cuda/lib、cuda/bin三个目录中的内容拷贝到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0 对应的include、lib、bin目录下即可。

  • 安装tensorflow-gpu:

      pip install --upgrade tensorflow-gpu
    
  • 可能碰到的问题:

    安装Tensorflow–GPU版本时如果一直出现如下问题:

      “ Could not load dynamic library ‘cudart64_100.dll’; dlerror: cudart64_100.dll not found”
    

    则需要检查和安装CUDA10.0 & CuDNN7.6.0

About

this repo is for learning how to use tensorflow 2.0

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages