Skip to content

Commit

Permalink
Browse files Browse the repository at this point in the history
  • Loading branch information
deltadbu committed Mar 10, 2024
2 parents d7b6e64 + 7a8bca7 commit 9c503ff
Show file tree
Hide file tree
Showing 9 changed files with 3,083 additions and 21 deletions.
604 changes: 604 additions & 0 deletions Lectures/Lec9.aux

Large diffs are not rendered by default.

2,000 changes: 2,000 additions & 0 deletions Lectures/Lec9.log

Large diffs are not rendered by default.

387 changes: 387 additions & 0 deletions Lectures/Lec9.nav

Large diffs are not rendered by default.

Empty file added Lectures/Lec9.out
Empty file.
Binary file modified Lectures/Lec9.pdf
Binary file not shown.
5 changes: 5 additions & 0 deletions Lectures/Lec9.snm
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
\beamer@slide {tab:multicol}{146}
\beamer@slide {tab:multicol}{147}
\beamer@slide {tab:multicol}{150}
\beamer@slide {tab:multicol}{157}
\beamer@slide {tab:multicol}{167}
Binary file added Lectures/Lec9.synctex.gz
Binary file not shown.
108 changes: 87 additions & 21 deletions Lectures/Lec9.tex
Original file line number Diff line number Diff line change
Expand Up @@ -1031,6 +1031,71 @@



\frame{
\frametitle{Approximating $I_{-}(u)$ using a differentiable function (5)}

\begin{figure}
\begin{tikzpicture}[x=1.0cm,y=1.0cm,scale=0.7]
%\pgfplotsset{my style/.append style={ axis x line=middle, axis y line=middle, axis equal }}



\def\dy{0};
\draw[ blue, ultra thick] (-2.5, 0+\dy) -- (0, 0+\dy);
% \draw[ red, thick] (-2.5, 0+\dy) -- (0, 0+\dy);

\draw[dashed, blue, ultra thick] (0, 0+\dy) -- (0, 2.5+\dy);

\node[blue, ultra thick] at (0.8, 1.8) {$I_{-}(u)$};

% \node[red, ultra thick] at (-1.2, 1.6) {$-\frac{1}{t} \log(-u)$};

\begin{axis}[anchor=origin, xlabel=$u$,
ylabel=$ $,
xtick={ -2,..., 2},
ytick={ -5, 0, 5, 10},
xmin=-2.5,
xmax=2.5,
ymin=-5,
ymax=10,
x=1cm, y=0.25cm,
];

% \addplot[domain=-3:-0.00001, red, thick]{ -1.0/0.8* ln(-x)};
\addplot[domain=-2.5:2.5, red, thick]{ ln(1+exp(3*x) ) };
% \addplot[domain=-1:3,-,red]{-x+1};
\end{axis};

\node[red, ultra thick] at (2, 1.0) {$ \phi( u ) $};

% \node[red] at (4,0) {$x_3+x_4=1$};
% \draw[fill=blue] (0, 0) -- ( 2, 0) -- (4,3) -- (0,1) -- (0,05);
% \node[circle, minimum size=3pt,inner sep=0pt, fill=red] at (0,0) {};
% \node[circle, minimum size=3pt,inner sep=0pt, fill=red] at (2,0) {};
% \node[circle, minimum size=3pt,inner sep=0pt, fill=red] at (4,3) {};
% \node[below, red, ultra thick] at (-0.2,-0.2) {start};
% \node[below, red, ultra thick] at (4.2,3) {end};
% \draw[->, red, ultra thick] (0,0) -- (2,0);
% \draw[->, red, ultra thick] (2,0) -- (4,3);

\end{tikzpicture}
\end{figure}

\begin{itemize}
\begin{small}
\item We can also approximate $I_{-}(u)$ using
\textcolor{red}{\bf logarithm of logistic function}:
\[
\hat{I}_{-}(u) = \phi(u) = \log( 1 + e^{ku} ) \qquad ( k>0 )
\]

\end{small}

\end{itemize}
}



\frame{
\frametitle{Approximating $I_{0}(u)$ using a differentiable function}

Expand Down Expand Up @@ -1187,7 +1252,7 @@

\item Now let's consider the infimum of Lagrangian function (called \textcolor{red}{\bf Lagrangian dual function}):
\[
g({\lambda, \nu} ) = \inf\limits_{{x}\in \mathcal{D}} L( {x}, {\lambda, \nu} )
g({\lambda, \nu} ) = \inf\limits_{{x}\in \mathbb{R}^n} L( {x}, {\lambda, \nu} )
\]
Note: infimum rather than minimum is used here as some sets have no minimum.
\end{itemize}
Expand Down Expand Up @@ -1221,8 +1286,8 @@
\begin{itemize}
\item Note that the Lagrangian dual function $g( {\lambda, \nu})$ is a point-wise minimum of affine functions over ${\lambda, \nu}$.
\begin{eqnarray}
g({\lambda, \nu}) &= & \inf\limits_{{x}\in \mathcal{D}} L( {x, \lambda, \nu} ) \nonumber \\
&=& \inf\limits_{{x}\in \mathcal{D}} ( f_0({x}) - \sum\limits_{i=1}^m \lambda_i f_i( {x} ) - \sum\limits_{i=1}^k \nu_i h_i( {x} )) \nonumber
g({\lambda, \nu}) &= & \inf\limits_{{x}\in \mathbb{R}^n} L( {x, \lambda, \nu} ) \nonumber \\
&=& \inf\limits_{{x}\in \mathbb{R}^n} ( f_0({x}) - \sum\limits_{i=1}^m \lambda_i f_i( {x} ) - \sum\limits_{i=1}^k \nu_i h_i( {x} )) \nonumber
\end{eqnarray}
\item Thus \textcolor{blue}{\bf Lagrangian dual function $g( {\lambda, \nu})$ is always concave} and \textcolor{red}{\bf the dual problem is always a convex programming problem} even if the primal problem is non-convex.
\end{itemize}
Expand Down Expand Up @@ -1499,10 +1564,10 @@
% \end{itemize}
\item Notice that for any feasible solution ${x}$ and ${\lambda} \leq 0$, ${\nu} \geq 0$, \textcolor{red}{\bf Lagrangian function is a lower bound of the primal objective function}, i.e. ${c^{T}x} \geq L({x, \lambda, \nu})$, and further
\[
{c^T x} \geq L({x, \lambda, \nu}) \geq \inf_{{x}\in \mathcal{D}} L( {x}, {\lambda, \nu} )
{c^T x} \geq L({x, \lambda, \nu}) \geq \inf_{{x}\in \mathbb{R}^n} L( {x}, {\lambda, \nu} )
\]

\item Let's define \textcolor{red}{\bf Lagrangian dual function} $g({\lambda, \nu} ) = \inf\limits_{{x}\in \mathcal{D}} L( {x}, {\lambda, \nu} )$ and rewrite the above inequality as
\item Let's define \textcolor{red}{\bf Lagrangian dual function} $g({\lambda, \nu} ) = \inf\limits_{{x}\in \mathbb{R}^n} L( {x}, {\lambda, \nu} )$ and rewrite the above inequality as
\[
{c^T x} \geq L({x, \lambda, \nu}) \geq g({\lambda, \nu} )
\]
Expand All @@ -1526,9 +1591,9 @@
\item
What is the Lagrangian dual function $g({ \lambda, \nu })$?
\begin{eqnarray}
g({\lambda, \nu}) &= & \inf\limits_{{x}\in \mathcal{D}} L( {x, \lambda, \nu} ) \nonumber \\
&=& \inf\limits_{{x}\in \mathcal{D}} ( {c^Tx} - \sum\limits_{i=1}^m \lambda_i ( a_{i1}x_{1} +...+ a_{in}x_{n} - b_i) - \sum\limits_{i=1}^m \nu_i x_i) \nonumber \\
&=& \inf\limits_{{x}\in \mathcal{D}} ( { \lambda^T b + (c^T - \lambda^T A - \nu^T) x} ) \nonumber\\
g({\lambda, \nu}) &= & \inf\limits_{{x}\in \mathbb{R}^n} L( {x, \lambda, \nu} ) \nonumber \\
&=& \inf\limits_{{x}\in \mathbb{R}^n} ( {c^Tx} - \sum\limits_{i=1}^m \lambda_i ( a_{i1}x_{1} +...+ a_{in}x_{n} - b_i) - \sum\limits_{i=1}^m \nu_i x_i) \nonumber \\
&=& \inf\limits_{{x}\in \mathbb{R}^n} ( { \lambda^T b + (c^T - \lambda^T A - \nu^T) x} ) \nonumber\\
&=& \begin{cases}
{ \lambda^T b} & \text{if } { c^T = \lambda^T A + \nu^T} \\
-\infty & \text{otherwise}
Expand Down Expand Up @@ -1640,9 +1705,9 @@
% \end{itemize}
\item Notice that for any feasible solution ${x}$ and ${\nu} \geq 0$, \textcolor{red}{\bf Lagrangian function is a lower bound of the primal objective function}, i.e. ${c^{T}x} \geq L({x, \lambda, \nu})$, and further
\[
{c^T x} \geq L({x, \lambda, \nu}) \geq \inf_{{x}\in \mathcal{D}} L( {x}, {\lambda, \nu} )
{c^T x} \geq L({x, \lambda, \nu}) \geq \inf_{{x}\in \mathbb{R}^n} L( {x}, {\lambda, \nu} )
\]
\item Let's define \textcolor{red}{\bf Lagrangian dual function} $g({\lambda, \nu} ) = \inf\limits_{{x}\in \mathcal{D}} L( {x}, {\lambda, \nu} )$ and rewrite the above inequality as
\item Let's define \textcolor{red}{\bf Lagrangian dual function} $g({\lambda, \nu} ) = \inf\limits_{{x}\in \mathbb{R}^n} L( {x}, {\lambda, \nu} )$ and rewrite the above inequality as
\[
{c^T x} \geq L({x, \lambda, \nu}) \geq g({\lambda, \nu} )
\]
Expand All @@ -1666,15 +1731,16 @@
\item
What is the Lagrangian dual function $g({ \lambda, \nu })$?
\begin{eqnarray}
g({\lambda, \nu}) &= & \inf\limits_{{x}\in \mathcal{D}} L( {x, \lambda, \nu} ) \nonumber \\
&=& \inf\limits_{{x}\in \mathcal{D}} ( {c^Tx} - \sum\limits_{i=1}^m \lambda_i ( a_{i1}x_{1} +...+ a_{in}x_{n} - b_i) - \sum\limits_{i=1}^m \nu_i x_i) \nonumber \\
&=& \inf\limits_{{x}\in \mathcal{D}} ( { \lambda^T b + (c^T - \lambda^T A - \nu^T) x} ) \nonumber\\
g({\lambda, \nu}) &= & \inf\limits_{{x}\in \mathbb{R}^n} L( {x, \lambda, \nu} ) \nonumber \\
&=& \inf\limits_{{x}\in \mathbb{R}^n} ( {c^Tx} - \sum\limits_{i=1}^m \lambda_i ( a_{i1}x_{1} +...+ a_{in}x_{n} - b_i) - \sum\limits_{i=1}^m \nu_i x_i) \nonumber \\
&=& \inf\limits_{{x}\in \mathbb{R}^n} ( { \lambda^T b + (c^T - \lambda^T A - \nu^T) x} ) \nonumber\\
&=& \begin{cases}
{ \lambda^T b} & \text{if } { c^T = \lambda^T A + \nu^T} \\
-\infty & \text{otherwise}
\end{cases} \nonumber
\end{eqnarray}
\item Note that $\mathcal{D} = \mathbb{R}^n$. Thus $ g({\lambda, \nu}) ={ \lambda^T b}$ if ${ c^T =\lambda^T A + \nu^T}$; otherwise, $g({\lambda, \nu}) = -\infty$, which is a trivial lower bound for the primal objective function ${c^Tx}$.
%\item Note that $\mathcal{D} = \mathbb{R}^n$.
\item Thus $ g({\lambda, \nu}) ={ \lambda^T b}$ if ${ c^T =\lambda^T A + \nu^T}$; otherwise, $g({\lambda, \nu}) = -\infty$, which is a trivial lower bound for the primal objective function ${c^Tx}$.
%\item We usually denote the domain of $g({\lambda, \nu})$ as $\mathbf{dom}\ g = \{ ({\lambda, \nu}) | g({\lambda, \nu}) > -\infty\}$.
%The difference $f({x}) - g({\lambda})$ is called \textcolor{red}{\bf duality gap}.
%\item Note $g({\lambda})$ is always concave even if the constraints are not convex.
Expand Down Expand Up @@ -1737,9 +1803,9 @@
%% \end{itemize}
%\item Notice that for any feasible solution ${x}$, \textcolor{red}{\bf Lagrangian function is a lower bound of the primal objective function}, i.e. ${c^{T}x} \geq L({x, \lambda})$, and further
%\[
%{c^T x} \geq L({x, \lambda}) \geq \inf_{{x}\in \mathcal{D}} L( {x}, {\lambda} )
%{c^T x} \geq L({x, \lambda}) \geq \inf_{{x}\in \mathbb{R}^n} L( {x}, {\lambda} )
%\]
% \item Let's define \textcolor{red}{\bf Lagrangian dual function} $g({\lambda} ) = \inf\limits_{{x}\in \mathcal{D}} L( {x}, {\lambda} )$ and rewrite the above inequality as
% \item Let's define \textcolor{red}{\bf Lagrangian dual function} $g({\lambda} ) = \inf\limits_{{x}\in \mathbb{R}^n} L( {x}, {\lambda} )$ and rewrite the above inequality as
% \[
% {c^T x} \geq L({x, \lambda}) \geq g({\lambda} )
% \]
Expand All @@ -1763,9 +1829,9 @@
%\item
%What is the Lagrangian dual function $g({ \lambda })$?
%\begin{eqnarray}
% g({\lambda}) &= & \inf\limits_{{x}\in \mathcal{D}} L( {x, \lambda} ) \nonumber \\
% &=& \inf\limits_{{x}\in \mathcal{D}} ( {c^Tx} - \sum\limits_{i=1}^m \lambda_i ( a_{i1}x_{1} +...+ a_{in}x_{n} - b_i) ) \nonumber \\
% &=& \inf\limits_{{x}\in \mathcal{D}} ( { \lambda^T b + (c^T - \lambda^T A ) x} ) \nonumber\\
% g({\lambda}) &= & \inf\limits_{{x}\in \mathbb{R}^n} L( {x, \lambda} ) \nonumber \\
% &=& \inf\limits_{{x}\in \mathbb{R}^n} ( {c^Tx} - \sum\limits_{i=1}^m \lambda_i ( a_{i1}x_{1} +...+ a_{in}x_{n} - b_i) ) \nonumber \\
% &=& \inf\limits_{{x}\in \mathbb{R}^n} ( { \lambda^T b + (c^T - \lambda^T A ) x} ) \nonumber\\
% &=& \begin{cases}
% { \lambda^T b} & \text{if } { c^T \geq \lambda^T A } \\
% -\infty & \text{otherwise}
Expand Down Expand Up @@ -1822,7 +1888,7 @@
%\item When $y\geq 0$ and $x\geq 2$, $L(x, y)$ is a lower bound of $x$.
%\item Lagrangian dual function:
%\begin{center}
%$g(y) = \inf\limits_{{x}\in \mathcal{D}} L(x,y) = \begin{cases} 2y & \text{ if } x\geq 0 \text{ and } (1-y)\geq 0 \\
%$g(y) = \inf\limits_{{x}\in \mathbb{R}^n} L(x,y) = \begin{cases} 2y & \text{ if } x\geq 0 \text{ and } (1-y)\geq 0 \\
% -\infty & \text{ otherwise }
% \end{cases} $
%\end{center}
Expand Down Expand Up @@ -1952,7 +2018,7 @@
\]
\item Lagrange dual function:
\[
g(\lambda) = \inf\limits_{{x}\in \mathcal{D}} (x_1 x_2 - \lambda_1 x1 - \lambda_2 x_2 + \lambda_3 (x_1^2 + x_2^2 - 1) )
g(\lambda) = \inf\limits_{{x}\in \mathbb{R}^n} (x_1 x_2 - \lambda_1 x1 - \lambda_2 x_2 + \lambda_3 (x_1^2 + x_2^2 - 1) )
\]
\item Dual problem:
\[
Expand Down
Empty file added Lectures/Lec9.toc
Empty file.

0 comments on commit 9c503ff

Please sign in to comment.