Forked from gsuuon/llm.nvim.
Added optional OPENAI_API_BASE
env to allow using a local LLM or any OpenAI API compatible endpoint.
Checkout oobabooga/text-generation-webui with --listen --extensions openai
params to expose a local LLM as a OpenAI compatible API
Use LLM's in Neovim. Build editor integrated prompts and customize your LLM workflow. The plugin comes with some starter prompts, but you can also create your own prompt library to suit your needs.
llm.nvim.mp4
- 🎪 OpenAI GPT (and compatible API's), Google PaLM, Huggingface, LlamaCpp, Kobold
- 🛸 Add LLM capabilities from other Neovim plugins
- 🎨 Build your own editor integrated completions
- 🔎 Basic local (to your git repo) vector store
- 🌠Streaming responses where available
- Nvim 0.8.0 or higher
- For the OpenAI provider (default), set the
OPENAI_API_KEY
environment variable to your api key - For the PaLM provider, set the
PALM_API_KEY
environment variable to your api key - curl
For local vector store:
- Python 3.10+
pip install numpy openai tiktoken
With packer.nvim
require('packer').startup(function(use)
use 'delwiv/localLLM.nvim'
end)
With lazy.nvim
require('lazy').setup({
'delwiv/localLLM.nvim'
})
llm.nvim comes with some starter prompts and makes it easy to build your own prompt library. For an example of a more complex agent-like multi-step prompt (e.g. curl, ask gpt for intermediate data, then include data in a final prompt) look at the openapi
starter prompt.
It can also be used from another plugin to easily add LLM capabilities, for an example look at note.nvim which adds some buffer-local prompts to note files.
:Llm [prompt-name]
— Start a completion of either the visual selection or the current buffer. Uses the default prompt if no prompt name is provided.
Select response
llm_select.mp4
:LlmSelect
— Select the response under the cursor.
Delete response
llmdelete.mp4
:LlmDelete
— Delete the response under the cursor. Ifprompt.mode == 'replace'
then replace with the original text.
🚧 WIP - Local vector store
- Python 3.10+
pip install numpy openai tiktoken
Check the module functions exposed in store. This uses the OpenAI embeddings api to generate vectors and queries them by cosine similarity.
To add items call into the llm.store
lua module functions, e.g.
:lua require('llm.store').add_lua_functions()
:lua require('llm.store').add_files('.')
Look at store.add_lua_functions
for an example of how to use treesitter to parse files to nodes and add them to the local store.
To get query results call store.prompt.query_store
with your input text, desired count and similarity cutoff threshold (0.75 seems to be decent). It returns a list of {id: string, content: string}:
builder = function(input, context)
---@type {id: string, content: string}[]
local store_results = require('llm.store').prompt.query_store(input, 2, 0.75)
-- add store_results to your messages
end
:LlmStore [command]
:LlmStore init
— initialize a store.json file at the closest git root directory:LlmStore query <query text>
— query a store.json
Multiple simultaneous prompts
llmmulti.mp4
:LlmMulti
— Start multiple prompt completions at the same time with the same input. Must specify prompt names. Escape spaces in names e.g.to\ spanish
, or use tab completion. Always completes on next line and alwaysmode = 'append'
.
Cancel a long-running prompt
llmcancel.mp4
:LlmCancel
— Cancel the active response under the cursor.
Show response
llmshow.mp4
:LlmShow
— Flash the response under the cursor if there is one.
require('llm').setup({
default_prompt? = .. , -- Prompt — modify the default prompt (`:Llm` with no argument)
hl_group? = '', -- string — Set the default highlight group of in-progress responses
prompts? = {} -- table<string, Prompt>` — add prompt alternatives
})
Prompts go in the prompts
field of the setup table and can be used via :Llm [prompt name]
.
A prompt entry defines how to handle a completion request - it takes in the editor input (either an entire file or a visual selection) and some context, and produces the api request data merging with any defaults. It also defines how to handle the API response - for example it can replace the selection (or file) with the response or insert it at the cursor positon.
Check out the starter prompts to see how to create prompts. Type definitions are in provider.lua. If you want to use the starter prompts alongside your own, you can use prompts = vim.tbl_extend('force', require('llm.prompts.starters'), { ... })
.
You can use require('util').module.autoload
instead of a naked require
to always re-require a module on use. This makes the feedback loop for developing prompts faster:
require('llm').setup({
- prompts = require('prompt_library')
+ prompts = require('llm.util').module.autoload('prompt_library')
})
I recommend setting this only during active prompt development, and switching to a normal require
otherwise.
Set the environment variable OPENAI_API_KEY
to your api key before starting nvim. OpenAI prompts can take an additional option field with a table containing { url?, endpoint?, authorization? }
fields to talk to compatible API's. Check the compat
starter prompt for an example.
Configuration
Add default request parameters for /chat/completions with initialize()
:
require('llm.providers.openai').initialize({
max_tokens = 120,
temperature = 0.7,
model = 'gpt-3.5-turbo-0301'
})
Keep a dummy OPENAI_API_KEY
, and add OPENAI_API_BASE
OPENAI_API_KEY=qsd OPENAI_API_BASE=http://localhost:7860/v1 nvim .
Set the PALM_API_KEY
environment variable to your api key.
Check the palm prompt in starter prompts for a reference. Palm provider defaults to the chat model (chat-bison-001
). The builder's return params can include model = 'text-bison-001'
to use the text model instead.
Params should be either a generateMessage body by default, or a generateText body if using model = 'text-bison-001'
.
['palm text completion'] = {
provider = palm,
builder = function(input, context)
return {
model = 'text-bison-001',
prompt = {
text = input
},
temperature = 0.2
}
end
}
Set the HUGGINGFACE_API_KEY
environment variable to your api key.
Set the model field on the params returned by the builder (or the static params in prompt.params
). Set params.stream = false
for models which don't support it (e.g. gpt2
). Check huggingface api docs for per-task request body types.
['huggingface bigcode'] = {
provider = huggingface,
params = {
model = 'bigcode/starcoder'
},
builder = function(input)
return { inputs = input }
end
}
This provider runs the built LlamaCpp executable. See starters for an example using the LLaMa 2 chat model (llama-2-13b-chat.ggmlv3.q4_K_M
). CLI options can be set per-prompt, making it easy to experiment with various options.
For older models that don't work with llama.cpp, koboldcpp might still support them. Check their repo for setup info.
Providers implement a simple interface so it's easy to add your own. Just set your provider as the provider
field in a prompt. Your provider needs to kick off the request and call the handlers as data streams in, finishes, or errors. Check the hf provider for a simpler example supporting server-sent events streaming. If you don't need streaming, just make a request and call handler.on_finish
with the result.
---@class Provider
---@field request_completion fun(handler: StreamHandlers, params?: table, options?: table): function Request a completion stream from provider, returning a cancel callback
---@class StreamHandlers
---@field on_partial (fun(partial_text: string): nil) Partial response of just the diff
---@field on_finish (fun(complete_text: string, finish_reason: string): nil) Complete response with finish reason
---@field on_error (fun(data: any, label?: string): nil) Error data and optional label
require('llm').setup({
prompts = {
['prompt_name'] = ...
}
})
Ask for additional user instruction
prompt_replace.mp4
ask = {
provider = openai,
params = {
temperature = 0.3,
max_tokens = 1500
},
builder = function(input)
local messages = {
{
role = 'user',
content = input
}
}
return util.builder.user_prompt(function(user_input)
if #user_input > 0 then
table.insert(messages, {
role = 'user',
content = user_input
})
end
return {
messages = messages
}
end, input)
end,
}
Create a commit message based on `git diff --staged`
commit-message-example.mp4
['commit_message'] = {
provider = openai,
mode = llm.mode.INSERT,
builder = function()
local git_diff = vim.fn.system {'git', 'diff', '--staged'}
return {
messages = {
{
role = 'system',
content = 'Write a short commit message according to the Conventional Commits specification for the following git diff: ```\n' .. git_diff .. '\n```'
}
}
}
end,
}
Modify input to append messages
modify-input-example.mp4
--- Looks for `<llm:` at the end and splits into before and after
--- returns all text if no directive
local function match_llm_directive(text)
local before, _, after = text:match("(.-)(<llm:)%s?(.*)$")
if not before and not after then
before, after = text, ""
elseif not before then
before = ""
elseif not after then
after = ""
end
return before, after
end
local instruct_code = 'You are a highly competent programmer. Include only valid code in your response.'
return {
['to_code'] = {
provider = openai,
builder = function(input)
local text, directive = match_llm_directive(input)
local msgs ={
{
role = 'system',
content = instruct_code,
},
{
role = 'user',
content = text,
}
}
if directive then
table.insert(msgs, { role = 'user', content = directive })
end
return {
messages = msgs
}
end,
mode = segment.mode.REPLACE
},
code = {
provider = openai,
builder = function(input)
return {
messages = {
{
role = 'system',
content = instruct_code,
},
{
role = 'user',
content = input,
}
}
}
end,
},
}
Replace text with Spanish
local openai = require('llm.providers.openai')
local segment = require('llm.segment')
require('llm').setup({
prompts = {
['to_spanish'] =
{
provider = openai,
hl_group = 'SpecialComment',
builder = function(input)
return {
messages = {
{
role = 'system',
content = 'Translate to Spanish',
},
{
role = 'user',
content = input,
}
}
}
end,
mode = segment.mode.REPLACE
}
}
})
Notifies each stream part and the complete response
local openai = require('llm.providers.openai')
require('llm').setup({
prompts = {
['show_parts'] = {
provider = openai,
builder = openai.default_builder,
mode = {
on_finish = function (final)
vim.notify('final: ' .. final)
end,
on_partial = function (partial)
vim.notify(partial)
end,
on_error = function (msg)
vim.notify('error: ' .. msg)
end
}
},
}
})
You can move prompts into their own file and use util.module.autoload
to quickly iterate on prompt development.
Setup
local openai = require('llm.providers.openai')
-- configure default model params here for the provider
openai.initialize({
model = 'gpt-3.5-turbo-0301',
max_tokens = 400,
temperature = 0.2,
})
local util = require('llm.util')
require('llm').setup({
hl_group = 'Substitute',
prompts = util.module.autoload('prompt_library'),
default_prompt = {
provider = openai,
builder = function(input)
return {
temperature = 0.3,
max_tokens = 120,
messages = {
{
role = 'system',
content = 'You are helpful assistant.',
},
{
role = 'user',
content = input,
}
}
}
end
}
})
Prompt library
local openai = require('llm.providers.openai')
local segment = require('llm.segment')
return {
code = {
provider = openai,
builder = function(input)
return {
messages = {
{
role = 'system',
content = 'You are a 10x super elite programmer. Continue only with code. Do not write tests, examples, or output of code unless explicitly asked for.',
},
{
role = 'user',
content = input,
}
}
}
end,
},
['to_spanish'] = {
provider = openai,
hl_group = 'SpecialComment',
builder = function(input)
return {
messages = {
{
role = 'system',
content = 'Translate to Spanish',
},
{
role = 'user',
content = input,
}
}
}
end,
mode = segment.mode.REPLACE
},
['to_javascript'] = {
provider = openai,
builder = function(input, ctx)
return {
messages = {
{
role = 'system',
content = 'Convert the code to javascript'
},
{
role = 'user',
content = input
}
}
}
end,
},
['to_rap'] = {
provider = openai,
hl_group = 'Title',
builder = function(input)
return {
messages = {
{
role = 'system',
content = "Explain the code in 90's era rap lyrics"
},
{
role = 'user',
content = input
}
}
}
end,
}
}