Skip to content

Commit

Permalink
[Safety Checker] Add Safety Checker Module
Browse files Browse the repository at this point in the history
  • Loading branch information
patrickvonplaten committed Aug 19, 2022
1 parent 7b8c883 commit d0c714a
Showing 1 changed file with 24 additions and 1 deletion.
25 changes: 24 additions & 1 deletion scripts/txt2img.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,12 +16,29 @@
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler

from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from transformers import AutoFeatureExtractor

feature_extractor = AutoFeatureExtractor.from_pretrained("CompVis/stable-diffusion-v-1-3", use_auth_token=True)
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-v-1-3", use_auth_token=True)

def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())


def numpy_to_pil(images):
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]

return pil_images


def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
Expand Down Expand Up @@ -220,7 +237,9 @@ def main():
if opt.fixed_code:
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)

print("start code", start_code.abs().sum())
precision_scope = autocast if opt.precision=="autocast" else nullcontext
precision_scope = nullcontext
with torch.no_grad():
with precision_scope("cuda"):
with model.ema_scope():
Expand Down Expand Up @@ -269,7 +288,11 @@ def main():
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
grid_count += 1

toc = time.time()
image = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()

# run safety checker
safety_checker_input = pipe.feature_extractor(numpy_to_pil(image), return_tensors="pt")
image, has_nsfw_concept = pipe.safety_checker(images=image, clip_input=safety_checker_input.pixel_values)

print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
f" \nEnjoy.")
Expand Down

0 comments on commit d0c714a

Please sign in to comment.