Skip to content

Receiver Operating Characteristic (ROC) Curve for Julia Language

License

Notifications You must be signed in to change notification settings

diegozea/ROC.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

59 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ROC

Roc destroying Sindbad's ship from The Book of Knowledge, The Grolier Society, 1911

Linux, OSX: Build Status
Windows: Build status
Code Coverage: Coverage Status codecov.io

An implementation of ROC (Receiver Operating Characteristic) curves for Julia.

Installation

] add https://github.com/diegozea/ROC.jl

Use

roc(scores::AbstractVector{T}, labels::AbstractVector{U}, truelabel::L; distances::Bool=false)

Here T is R or Union{R,Missing} for some type R<:Real and U is L or Union{L,Missing} for some type L<:Any. The labels vector must take exactly two non-missing values.

distances defines whether the scores values are distance-scored, i.e. a higher score value means a worse match. The default is false indicating the more typical opposite case where a higher score value means a better match

roc(scores::AbstractVector{R}, labels::BitVector{Bool}; distances::Bool=false)

Alternative method for optimal performance (no missing values allowed).

The methods above return a ROCData object, whose fields FPR and TPR are the vectors of true and false positive rates, respectively.

AUC(curve::ROCData)

Area under the curve.

PPV(curve::ROCData)

Positive predictive value.

Example

Generate synthetic data:

julia> function noisy(label; λ=0.0)
           if label
               return 1 - λ*rand()
           else
               return λ*rand()
           end
       end

julia> labels = rand(Bool, 200);

julia> scores(λ) = map(labels) do label
           noisy(label, λ=λ)
       end

Compare area under ROC curves:

julia> using ROC

julia> roc_good = roc(scores(0.6), labels, true);
julia> roc_bad = roc(scores(1.0), labels, true);

julia> area_good = AUC(roc_good)
0.9436237564063913

julia> area_bad =  AUC(roc_bad)
0.5014571399859311

Use Plots.jl to plot the receiver operator characteristics:

julia> using Plots

julia> plot(roc_good, label="good");
julia> plot!(roc_bad, label="bad")

This generates the plot appearing at the top of the page.

About

Receiver Operating Characteristic (ROC) Curve for Julia Language

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages